[HDU6315]Naive Operations(线段树+树状数组)
构造一个序列B[i]=-b[i],建一颗线段树,维护区间max,
每次区间加后再询问该区间最大值,如果为0就在树状数组中对应的值+1(该操作可能进行多次)
答案在树状数组中找
其实只用一颗线段树也是可以的
Code
#include <cstdio>
#include <algorithm>
#include <cstring>
#define mst(a) memset(a,0,sizeof(a))
#define N 100010
using namespace std; int n,m,b[N]; inline int read(){
int x=0,f=1;char ch=getchar();
while(ch<'0'||ch>'9'){if(ch=='-')f=-1;ch=getchar();}
while(ch>='0'&&ch<='9'){x=x*10+ch-'0';ch=getchar();}
return x*f;
} namespace BT{
int T[N];
#define lowbit(x) ((x)&(-x))
void add(int x,int v){for(;x<=n;x+=lowbit(x))T[x]+=v;}
int Q(int x){int r=0;for(;x;x-=lowbit(x))r+=T[x];return r;}
void ntt(){mst(T);}
} namespace Seg{
#define MID int mid=(l+r)>>1,ls=id<<1,rs=id<<1|1
int tag[N*4];
struct info{
int x,id;
info(){x=id=0;}
info(int a,int b):x(a),id(b){}
friend info operator+(info a,info b){
return a.x>b.x?a:b;
}
}T[N*4];
void build(int l,int r,int id){
if(l==r){T[id]=info(-b[l],l);return;}
MID;
build(l,mid,ls),build(mid+1,r,rs);
T[id]=T[ls]+T[rs];
}
void pushdown(int l,int r,int id){
int &tmp=tag[id];
if(!tmp)return;
MID;
tag[ls]+=tmp,tag[rs]+=tmp;
T[ls].x+=tmp,T[rs].x+=tmp;
tmp=0;
}
void upd(int l,int r,int id,int L,int R,int v){
if(L<=l&&r<=R){tag[id]+=v;T[id].x+=v;return;}
pushdown(l,r,id);
MID;
if(L<=mid)upd(l,mid,ls,L,R,v);
if(R>=mid+1)upd(mid+1,r,rs,L,R,v);
T[id]=T[ls]+T[rs];
}
info Q(int l,int r,int id,int L,int R){
if(L<=l&&r<=R){return T[id];}
pushdown(l,r,id);
MID;
info res(-1e9,0);
if(L<=mid)res=res+Q(l,mid,ls,L,R);
if(R>=mid+1)res=res+Q(mid+1,r,rs,L,R);
return res;
}
void fft(){mst(tag),mst(T);}
}
void fwt(){Seg::fft(),BT::ntt();}
int main(){
for(;~scanf("%d%d",&n,&m);){
fwt();
for(int i=1;i<=n;++i)b[i]=read();
Seg::build(1,n,1);
for(int i=1;i<=m;++i){
char s[10];scanf("%s",s);
int l=read(),r=read();
if(s[0]=='a'){
Seg::upd(1,n,1,l,r,1);
for(;;){
Seg::info tmp=Seg::Q(1,n,1,l,r);
if(tmp.x==0){
Seg::upd(1,n,1,tmp.id,tmp.id,-b[tmp.id]);
BT::add(tmp.id,1);
}else break;
} }else printf("%d\n",BT::Q(r)-BT::Q(l-1));
}
}
return 0;
}
[HDU6315]Naive Operations(线段树+树状数组)的更多相关文章
- HDU6315 Naive Operations(线段树 复杂度分析)
题意 题目链接 Sol 这题关键是注意到题目中的\(b\)是个排列 那么最终的答案最多是\(nlogn\)(调和级数) 设\(d_i\)表示\(i\)号节点还需要加\(d_i\)次才能产生\(1\)的 ...
- HDU6315 Naive Operations 线段树
目录 Catalog Solution: (有任何问题欢迎留言或私聊 && 欢迎交流讨论哦 Catalog Problem:Portal传送门 原题目描述在最下面. Solution ...
- HDU-6315 Naive Operations//2018 Multi-University Training Contest 2___1007 (线段树,区间除法)
原题地址 Naive Operations Time Limit: 6000/3000 MS (Java/Others) Memory Limit: 502768/502768 K (Java/ ...
- HDU6315 Naive Operations(多校第二场1007)(线段树)
Naive Operations Time Limit: 6000/3000 MS (Java/Others) Memory Limit: 502768/502768 K (Java/Other ...
- hdu Naive Operations 线段树
题目大意 题目链接Naive Operations 题目大意: 区间加1(在a数组中) 区间求ai/bi的和 ai初值全部为0,bi给出,且为n的排列,多组数据(<=5),n,q<=1e5 ...
- 杭电多校第二场 hdu 6315 Naive Operations 线段树变形
Naive Operations Time Limit: 6000/3000 MS (Java/Others) Memory Limit: 502768/502768 K (Java/Other ...
- HDU - 6315(2018 Multi-University Training Contest 2) Naive Operations (线段树区间操作)
http://acm.hdu.edu.cn/showproblem.php?pid=6315 题意 a数组初始全为0,b数组为1-n的一个排列.q次操作,一种操作add给a[l...r]加1,另一种操 ...
- HDU 6315 Naive Operations(线段树区间整除区间)
Problem DescriptionIn a galaxy far, far away, there are two integer sequence a and b of length n.b i ...
- HDU - 6315 Naive Operations (线段树+思维) 2018 Multi-University Training Contest 2
题意:数量为N的序列a和b,a初始全为0,b为给定的1-N的排列.有两种操作:1.将a序列区间[L,R]中的数全部+1:2.查询区间[L,R]中的 ∑⌊ai/bi⌋(向下取整) 分析:对于一个位置i, ...
随机推荐
- 设计模式:桥接(Bridge)模式
设计模式:桥接(Bridge)模式 一.前言 写到这里,基本上就是对前面几种模式的扩展和区别了,可以看到我们前面的几种模式,很多时候都出现了重叠,这里要分清一个概念,模式并不是完全隔离和独立的,有 ...
- sql 嵌套查询
sql 某一字段 数量大于1 SELECT * FROM ecm_goods_spec AWHERE ( SELECT count( * ) FROM ecm_goods_spec BWHERE A. ...
- C#图解教程读书笔记(第2章 C#编程概述)
这章主要是一个对于C#程序的概括解释 和C/C++不同,不是用include声明引用的头文件,而是通过using的方式,声明引用的命名空间. 命名和C/C++类似,并且也是区分大小写的,这件事情在VB ...
- 快速搭建一个SSM框架demo
我之所以写一个快速搭建的demo,主要想做一些容器的demo,所以为了方便大家,所以一切从简,简单的3层架构 先用mysql的ddl,后期不上oracle的ddl ; -- ------------- ...
- 十一.安装Redis
redis是一个NOSql数据库,在java web中,经常用来存储session等,官网是https://redis.io/ 当前官网指出的稳定版本为3.2.6,下载地址为http://downlo ...
- PHP 生成全局唯一id
直接上代码: function generate_global_uniqid() { $prefix = md5(microtime(true)); // 生成唯一ID发生器 prefix,如果为服务 ...
- PHP验证信用卡卡号函数
/** * 验证银行卡号是否是信用卡 * @param $cardnumber * @return bool */ function validateCard ($cardnumber) { $car ...
- 商品数量编辑按钮3D效果动画
.move-enter-active transition:all 0.4s linear transform:rotate(180deg).move-leave-active transition: ...
- javascript-数字转罗马数字
阿拉伯数字与罗马数字转换 罗马数字表示 XXI, 21 个位数举例I, 1 ]II, 2] III, 3] IV, 4 ]V, 5 ]VI, 6] VII, 7] VIII,8 ]IX, 9 ·十位数 ...
- .NET 中 如果一个Task A正在await另一个Task B,那么Task A是什么状态
新建一个.NET Core控制台程序,输入如下代码: using System; using System.Threading; using System.Threading.Tasks; class ...