题目大意:把$n(n\leqslant30)$个数分成两组,两组个数最多相差$1$,求出两组元素差的绝对值最小使多少

题解:模拟退火

卡点:$\exp$中的两个数相减写反,导致$\exp(x)$中的$x>0$,$\exp(x)>1$,相当于一直接受生成的解

C++ Code:

#include <algorithm>
#include <cstdio>
#include <cmath>
#define maxn 32
inline long long abs(long long a) {return a > 0 ? a : -a;}
int T, n, divn;
long long sum; const double ST = 100, delT = 0.9992, eps = 1e-5;
int Tim = 20;
struct node {
int s[maxn];
long long w;
} ans;
inline long long calc(node &x) {
long long __sum = 0;
for (int i = 0; i < divn; i++) __sum += x.s[i];
x.w = abs(sum - __sum - __sum);
if (n & 1) x.w = std::min(x.w, abs(sum - __sum - __sum - x.s[divn] - x.s[divn]));
return x.w;
}
inline double rand_d() {return static_cast<double> (rand()) / RAND_MAX;} void SA() {
double T = ST;
node now = ans, nxt;
while (T > eps) {
nxt = now;
int x = rand() % n, y = rand() % n;
T *= delT;
if (x == y) continue;
std::iter_swap(nxt.s + x, nxt.s + y);
long long del = calc(nxt);
if (del < now.w || exp((now.w - del) / T) > rand_d()) now = nxt;
if (del < ans.w) ans = nxt;
}
}
int main() {
srand(20040826);
scanf("%d", &T);
while (T --> 0) {
scanf("%d", &n); divn = n >> 1;
sum = 0;
for (int i = 0; i < n; i++) scanf("%d", ans.s + i), sum += ans.s[i];
if (n == 1) {
printf("%d\n", *ans.s);
continue;
}
std::random_shuffle(ans.s, ans.s + n);
calc(ans);
for (int i = 0; i < Tim; i++) SA();
printf("%lld\n", ans.w);
}
return 0;
}

  

[洛谷P3878][TJOI2010]分金币的更多相关文章

  1. luogu P3878 [TJOI2010]分金币

    [返回模拟退火略解] 题目描述 今有 nnn 个数 {ai}\{a_i\}{ai​},把它们分成两堆{X},{Y}\{X\},\{Y\}{X},{Y},求一种分配使得∣∑i∈Xai−∑i∈Yai∣|\ ...

  2. [luogu3878][TJOI2010]分金币【模拟退火】

    题目描述 现在有n枚金币,它们可能会有不同的价值,现在要把它们分成两部分,要求这两部分金币数目之差不超过1,问这样分成的两部分金币的价值之差最小是多少? 分析 根据模拟退火的基本套路,先随机分两堆金币 ...

  3. 洛谷P1154 奶牛分厩

    P1154 奶牛分厩 173通过 481提交 题目提供者该用户不存在 标签高性能 难度普及- 时空限制1s / 128MB 提交  讨论  题解 最新讨论更多讨论 测试点3??? 求助!超时了 我抗议 ...

  4. 洛谷——P1154 奶牛分厩

    P1154 奶牛分厩 题目描述 农夫约翰有N(1<=N<=5000)头奶牛,每头奶牛都有一个唯一的不同于其它奶牛的编号Si,所有的奶牛都睡在一个有K个厩的谷仓中,厩的编号为0到K-1.每头 ...

  5. [TJOI2010]分金币

    嘟嘟嘟 看数据范围,就能想到折半搜索. 但怎么搜,必须得想清楚了. 假设金币总数为1000,有20个人,首先搜前10个人,把答案记下来.然后如果在后十个人中搜到了4个人,价值为120,那么我们应该在记 ...

  6. 洛谷 P3871 [TJOI2010]中位数 解题报告

    P3871 [TJOI2010]中位数 题目描述 给定一个由N个元素组成的整数序列,现在有两种操作: 1 add a 在该序列的最后添加一个整数a,组成长度为N + 1的整数序列 2 mid 输出当前 ...

  7. 【洛谷】P2694 接金币(排序)

    题目描述 在二维坐标系里,有N个金币,编号0至N-1.初始时,第i个金币的坐标是(Xi,Yi).所有的金币每秒向下垂直下降一个单位高度,例如有个金币当前坐标是(xf, yf),那么t秒后金币所在的位置 ...

  8. 洛谷 P3879 [TJOI2010]阅读理解

    P3879 [TJOI2010]阅读理解 题目描述 英语老师留了N篇阅读理解作业,但是每篇英文短文都有很多生词需要查字典,为了节约时间,现在要做个统计,算一算某些生词都在哪几篇短文中出现过. 输入输出 ...

  9. 洛谷——P3871 [TJOI2010]中位数

    P3871 [TJOI2010]中位数 一眼秒掉,这不是splay水题吗,套模板 #include<bits/stdc++.h> #define IL inline #define N 1 ...

随机推荐

  1. quartz与Spring整合

    1.创建maven工程,导入spring和quartz相关依赖 2.创建任务类 3.在spring配置文件中配置任务类 4.在spring配置文件中配置JobDetail 5.在spring配置文件中 ...

  2. getSteam

    using System;using System.Collections.Generic;using System.ComponentModel;using System.Data;using Sy ...

  3. 一种精准monkey测试的方法

    WeTest 导读 相信大家都知道移动端应用的monkey测试吧,不知你们有没有为monkey测试的太过于随机性的特性有过困扰,至少在我们这种界面控件较少且控件位置较偏的app的使用上其测试有效性大打 ...

  4. java 素数问题

    1.素数 质数定义为在大于1的自然数中,除了1和它本身以外不再有其他因数. 2.java 实现 一般都要用不能被自己和其他数字整除判断,jdk中已经有更好的实现方法了. List<BigInte ...

  5. 「日常训练」Uncle Tom's Inherited Land*(HDU-1507)

    题意与分析 题意是这样的:给你一个\(N\times M\)的图,其中有一些点不能放置\(1\times 2\)大小的矩形,矩形可以横着放可以竖着放,问剩下的格子中,最多能够放多少个矩形. 注意到是\ ...

  6. hdu5698瞬间移动(杨辉三角+快速幂+逆元)

    瞬间移动 Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)Total Submis ...

  7. 第六阶段·数据库MySQL及NoSQL实践第1章·章节一MySQL数据库

    01 课程介绍 02 数据库管理系统介绍 03 MySQL安装方式介绍及源码安装 04 MySQL安装后的基本配置 05 MySQL体系结构-服务器.客户端模型 06 MySQL体系结构-实例.连接层 ...

  8. 一种跨平台的C++遍历目录的方法

    参考了网络上各路大神的实现方法.主要使用了io.h库 #include <iostream> #include <cstring> #include <io.h> ...

  9. 洛谷P1068 分数线划定:sort结构体排序+贪心

    题目描述 世博会志愿者的选拔工作正在 A 市如火如荼的进行.为了选拔最合适的人才,A市对所有报名的选手进行了笔试,笔试分数达到面试分数线的选手方可进入面试. 面试分数线根据计划录取人数的150%划定, ...

  10. 隐马尔科夫模型(hidden Markov Model)

    万事开头难啊,刚开头确实不知道该怎么写才能比较有水平,这篇博客可能会比较长,隐马尔科夫模型将会从以下几个方面进行叙述:1 隐马尔科夫模型的概率计算法  2 隐马尔科夫模型的学习算法 3 隐马尔科夫模型 ...