题目

给定\(n\ (n\le 2000)\)个坐标,求四个坐标使得围起来的四边形面积最大。

分析

最暴力的想法是枚举四个点,然而肯定超时。接着不知道怎么想到中途相遇,然而一点关系都没有。这里用到了一个单调性:

如果在凸包上确定了一个点\(x\),令\(x\)逆时针方向的第一个点为\(y\),这时确定了一个点\(z\)使得\(S_{\triangle XYZ}最大,那么当\)y\(逆时针移动的时候,使得三角形面积最大的点\)z\(就会不动或逆时针移动。这个性质发展成为我们说的旋转卡壳。
这就是说,如果在凸包上确定了一个点,那么我们可以\)O(n)\(求出包含这个点的所有凸包上的四边形的最大面积。
所以我们可以枚举所有点,在\)O(n^2)$中求出答案。

代码

这里有几个地方需要注意到。

  1. 求凸包极角排序的时候,选择的基础点一定是最下面,最左边的,而不可以仅仅是最下面的,否则会出现\(0\)和\(-0\)这种情况。
  2. 在求凸包单调栈弹出的时候,要用小于等于号,否则如果有重点的情况就会出现问题。
  3. 在计算答案时,每次移动\(j\)的时候要记得更新\(s1\)和\(s2\)。
#include<cstdio>
#include<algorithm>
#include<cmath>
using namespace std;
const int maxn=2e3+10;
struct node {
double x,y;
} a[maxn],sta[maxn];
int top=0;
double P(double x) {
return x*x;
}
double dis(node a,node b) {
return sqrt(P(a.x-b.x)+P(a.y-b.y));
}
double cross(node a,node b,node c) {
return (b.x-a.x)*(c.y-a.y)-(b.y-a.y)*(c.x-a.x);
}
bool cmp(node e,node f) {
double tmp=cross(a[1],e,f);
if (tmp>0) return true;
if (tmp<0) return false;
return dis(a[1],e)<dis(a[1],f);
}
int main() {
#ifndef ONLINE_JUDGE
freopen("test.in","r",stdin);
freopen("my.out","w",stdout);
#endif
int n;
scanf("%d",&n);
for (int i=1;i<=n;++i) {
scanf("%lf%lf",&a[i].x,&a[i].y);
if (a[i].y<a[1].y || (a[i].y==a[1].y && a[i].x<a[1].x)) swap(a[1],a[i]); // here
}
sort(a+2,a+n+1,cmp);
sta[top=1]=a[1];
for (int i=2;i<=n;++i) {
while (top>1 && cross(sta[top-1],sta[top],a[i])<=0) --top; // here
sta[++top]=a[i];
}
if (top<=4) {
double ans=0;
if (top>2) ans=cross(sta[1],sta[2],sta[3]);
if (top==4) ans+=cross(sta[1],sta[3],sta[4]);
ans/=2;
printf("%.3lf\n",ans);
return 0;
}
double ans=0;
for (int i=1;i<=top-2;++i) {
int j=(i+1)%top+1,k=i%top+1,l,id=j%top+1;
double s1=cross(sta[i],sta[k],sta[j])/2;
double s2=0;
for (l=id;l!=i;l=l%top+1) {
double tmp=cross(sta[i],sta[j],sta[l])/2;
if (tmp>s2) s2=tmp,id=l;
}
l=id;
ans=max(ans,s1+s2);
for (j=j%top+1;j%top+1!=i;j=j%top+1) {
s1=cross(sta[i],sta[k],sta[j])/2; // here
s2=cross(sta[i],sta[j],sta[l])/2; // here
if (l==j) l=l%top+1,s2=cross(sta[i],sta[j],sta[l])/2;
while (k%top+1!=j && cross(sta[i],sta[k%top+1],sta[j])/2>s1) k=k%top+1,s1=cross(sta[i],sta[k],sta[j])/2;
while (l%top+1!=i && cross(sta[i],sta[j],sta[l%top+1])/2>s2) l=l%top+1,s2=cross(sta[i],sta[j],sta[l])/2;
ans=max(ans,s1+s2);
}
}
printf("%.3lf\n",ans);
}

bzoj1069-最大土地面积的更多相关文章

  1. 【BZOJ-1069】最大土地面积 计算几何 + 凸包 + 旋转卡壳

    1069: [SCOI2007]最大土地面积 Time Limit: 1 Sec  Memory Limit: 128 MBSubmit: 2707  Solved: 1053[Submit][Sta ...

  2. bzoj1069 SCOI2007 最大土地面积

    1069: [SCOI2007]最大土地面积 Time Limit: 1 Sec  Memory Limit: 128 MBSubmit: 2560  Solved: 983 Description ...

  3. bzoj1069 [SCOI2007]最大土地面积 旋转卡壳

    1069: [SCOI2007]最大土地面积 Time Limit: 1 Sec  Memory Limit: 128 MBSubmit: 3767  Solved: 1501[Submit][Sta ...

  4. BZOJ1069 SCOI2007最大土地面积(凸包+旋转卡壳)

    求出凸包,显然四个点在凸包上.考虑枚举某点,再移动另一点作为对角线,容易发现剩下两点的最优位置是单调的.过程类似旋转卡壳. #include<iostream> #include<c ...

  5. BZOJ1069 [SCOI2007]最大土地面积 【凸包 + 旋转卡壳】

    题目链接 BZOJ1069 题解 首先四个点一定在凸包上 我们枚举对角线,剩下两个点分别是两侧最远的点 可以三分,复杂度\(O(n^2logn)\) 可以借鉴旋转卡壳的思想,那两个点随着对角线的一定单 ...

  6. [BZOJ1069][SCOI2007]最大土地面积(水平扫描法求凸包+旋转卡壳)

    题意:在某块平面土地上有N个点,你可以选择其中的任意四个点,将这片土地围起来,当然,你希望这四个点围成. 的多边形面积最大.n<=2000. 先求凸包,再枚举对角线,随着对角线的斜率上升,另外两 ...

  7. [BZOJ1069][SCOI2007]最大土地面积 凸包+旋转卡壳

    1069: [SCOI2007]最大土地面积 Time Limit: 1 Sec  Memory Limit: 128 MBSubmit: 3669  Solved: 1451[Submit][Sta ...

  8. [Bzoj1069][Scoi2007]最大土地面积(凸包)(旋转卡壳)

    1069: [SCOI2007]最大土地面积 Time Limit: 1 Sec  Memory Limit: 128 MBSubmit: 3629  Solved: 1432[Submit][Sta ...

  9. BZOJ1069 SCOI2007 最大土地面积 凸包、旋转卡壳

    传送门 在这里假设可以选择两个相同的点吧-- 那么选出来的四个点一定会在凸包上 建立凸包,然后枚举这个四边形的对角线.策略是先枚举对角线上的一个点,然后沿着凸包枚举另一个点.在枚举另一个点的过程中可以 ...

  10. 【bzoj1069】最大土地面积

    Description 在某块平面土地上有N个点,你可以选择其中的任意四个点,将这片土地围起来,当然,你希望这四个点围成的多边形面积最大. Input 第1行一个正整数N,接下来N行,每行2个数x,y ...

随机推荐

  1. UNIX故障--sun m4000服务器故障硬盘更换案例

    一.故障诊断 查看messages日志c0d0t0这块盘不断报错,类型为:retryable,如下: root@gdhx # more /var/adm/messages Aug  5 16:43:0 ...

  2. 6 线程threading

    1.第1种方式:threading模块 1)单线程执行 #-*- coding:utf-8 -*- import time def main(): print("我错了...") ...

  3. Python之celery

    一.celery简介 Celery是一个Python开发的异步分布式任务调度模块.celery本身不提供消息服务,使用第三方服务,也就是borker来传递任务,目前支持rebbing, redis, ...

  4. cakephp2.x 多个应用程序公用一个核心类库

    环境Windows,apache,cake版本2.3.3 Cake项目路径 D:\wamp\www\Mycakephp 浏览器打开 http://localhost/Mycakephp 能够正常访问到 ...

  5. nexys4-DDR开发板数码管驱动-第二篇

    1. 有这个板子使用的是Artix-7系列的XC7A100T-1CSG324C芯片.作为7系列中的一款FPGA,这个芯片的结构与Kintex-7和Virtex-7几乎一样.也配备了XADC.在Arti ...

  6. hdu1848Fibonacci again and again(sg函数)

    Fibonacci again and again Time Limit: 1000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Jav ...

  7. 180709-Java实现获取本机Ip的工具类

    180709-Java实现获取本机Ip的工具类 获取本机Ip算是比较常见的一个需求场景了,比如业务报警,可能就会带上出问题的机器IP,方便直接上去看日志定位问题,那么问题来了,如何获取机器IP呢? I ...

  8. (C#)设计模式之状态模式

    1.状态模式 当一个对象的内在状态改变时允许改变其行为,这个对象看起像是改变了其类. *状态模式主要解决的是当控制一个对象的状态转换的条件表达式过于复杂时,可以将状态的判断逻辑转移到表示不同状态的一系 ...

  9. git 从头开始

    下载安装git 打开git,输入以下命令,引号内的为你自己的名字和邮箱 git config --global user.name "Your Name"git config -- ...

  10. 图像质量评价指标之 PSNR 和 SSIM

    1. PSNR (Peak Signal-to-Noise Ratio) 峰值信噪比 给定一个大小为 \(m×n\) 的干净图像 \(I\) 和噪声图像 \(K\),均方误差 \((MSE)\) 定义 ...