sg函数总结
http://blog.csdn.net/luomingjun12315/article/details/45555495
这一段时间写的题和我接下来要展示的一些概念都来自这里↑。
sg函数总结的更多相关文章
- HDU 5795 A Simple Nim 打表求SG函数的规律
A Simple Nim Problem Description Two players take turns picking candies from n heaps,the player wh ...
- 【转】博弈—SG函数
转自:http://chensmiles.blog.163.com/blog/static/12146399120104644141326/ http://blog.csdn.net/xiaofeng ...
- HDU 1848 Fibonacci again and again【SG函数】
对于Nim博弈,任何奇异局势(a,b,c)都有a^b^c=0. 延伸: 任何奇异局势(a1, a2,… an)都满足 a1^a2^…^an=0 首先定义mex(minimal excludant)运算 ...
- POJ2425 A Chess Game[博弈论 SG函数]
A Chess Game Time Limit: 3000MS Memory Limit: 65536K Total Submissions: 3917 Accepted: 1596 Desc ...
- bzoj1188 [HNOI2007]分裂游戏 博弈论 sg函数的应用
1188: [HNOI2007]分裂游戏 Time Limit: 10 Sec Memory Limit: 162 MBSubmit: 973 Solved: 599[Submit][Status ...
- BZOJ1188 [HNOI2007]分裂游戏(SG函数)
传送门 拿到这道题就知道是典型的博弈论,但是却不知道怎么设计它的SG函数.看了解析一类组合游戏这篇论文之后才知道这道题应该怎么做. 这道题需要奇特的模型转换.即把每一个石子当做一堆石子,且原来在第i堆 ...
- sg函数与博弈论2
参考链接: http://blog.sina.com.cn/s/blog_51cea4040100h3l9.html 这篇主要就是讲anti-sg.multi-sg和every-sg的. 例1 poj ...
- sg函数与博弈论
这个标题是不是看起来很厉害呢... 我们首先来看一个最简单的游戏.比如我现在有一堆石子,有p个,每次可以取走若干个(不能不取),不能取的人就输了. 现在假设有两个人要玩这个游戏,一个人先手,一个人后手 ...
- hdu1536&&hdu3023 SG函数模板及其运用
S-Nim Time Limit: 1000MS Memory Limit: 32768KB 64bit IO Format: %I64d & %I64u Submit Status ...
- HDU1848 Fibonacci again and again SG函数
Fibonacci again and again Time Limit: 1000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Jav ...
随机推荐
- 51nod 1486 大大走格子——dp
有一个h行w列的棋盘,里面有一些格子是不能走的,现在要求从左上角走到右下角的方案数. Input 单组测试数据. 第一行有三个整数h, w, n(1 ≤ h, w ≤ 10^5, 1 ≤ n ≤ 20 ...
- bzoj 4773: 负环——倍增
Description 在忘记考虑负环之后,黎瑟的算法又出错了.对于边带权的有向图 G = (V, E),请找出一个点数最小的环,使得 环上的边权和为负数.保证图中不包含重边和自环. Input 第1 ...
- nginx与php-fpm通讯方式
nginx和php-fpm的通信方式有两种,一种是tcp socket的方式,一种是unix socke方式. tcp sockettcp socket的优点是可以跨服务器,当nginx和php-fp ...
- B. Complete the Word(Codeforces Round #372 (Div. 2)) 尺取大法
B. Complete the Word time limit per test 2 seconds memory limit per test 256 megabytes input standar ...
- xgboost/gbdt在调参时为什么树的深度很少就能达到很高的精度?
问题: 用xgboost/gbdt在在调参的时候把树的最大深度调成6就有很高的精度了.但是用DecisionTree/RandomForest的时候需要把树的深度调到15或更高.用RandomFore ...
- 任务调度框架kunka
kunka kunka是一个任务调度框架.用户只需要在Task接口中实现自己要执行的功能,并且选择合适的执行器,放入TaskManager中,就可以了完成整个任务了. 实现细节 整个任务信息存放在内存 ...
- Python3 学习第一天总结
一.python介绍 1.python是一门动态解释性的强类型定义语言: 简单解释一下: 定义变量不需要定义类型的为动态语言:典型的有Python和Ruby,反之定义变量需要定义类型的为静态语言:典型 ...
- GDB实战
程序中除了一目了然的Bug之外都需要一定的调试手段来分析到底错在哪.到目前为止我们的调试手段只有一种:根据程序执行时的出错现象假设错误原因,然后在代码中适当的位置插入 printf ,执行程序并分析打 ...
- 33.Search in Rotated Sorted Array---二分变形---《剑指offer》面试题8
题目链接 题目大意:在一个旋转数组中,判断给定的target是否存在于该旋转数组中.数组中没有重复数值.例子如下: 法一:二分.确定中间元素之后,就要判断下一步是遍历左数组还是遍历右数组.如果左数组有 ...
- yml格式
是什么? yml文件扩展名是YAML的缩写,YAML于2001年出现,是一种数据描述语言,和xml类似 为什么用它? 我们在做javaweb项目的时候最常见的就是.xml配置文件和properitie ...