http://blog.csdn.net/luomingjun12315/article/details/45555495

这一段时间写的题和我接下来要展示的一些概念都来自这里↑。

必胜点和必败点的概念:
       P点:必败点,换而言之,就是谁处于此位置,则在双方操作正确的情况下必败。
       N点:必胜点,处于此情况下,双方操作均正确的情况下必胜。
 
必胜点和必败点的性质:
        1、所有终结点是 必败点 P 。(我们以此为基本前提进行推理,换句话说,我们以此为假设)
        2、从任何必胜点N 操作,至少有一种方式可以进入必败点 P。
        3、无论如何操作,必败点P 都只能进入 必胜点 N。
 
Sprague-Grundy定理(SG定理): 
  游戏和的SG函数等于各个游戏SG函数的Nim和(异或和)。这样就可以将每一个子游戏分而治之,从而简化了问题。而Bouton定理就是Sprague-Grundy定理在Nim游戏中的直接应用,因为单堆的Nim游戏 SG函数满足 SG(x) = x。
 
SG函数:
        首先定义mex(minimal excludant)运算,这是施加于一个集合的运算,表示最小的不属于这个集合的非负整数。例如mex{0,1,2,4}=3、mex{2,3,5}=0、mex{}=0。
        对于任意状态 x , 定义 SG(x) = mex(S),其中 S 是 x 后继状态的SG函数值的集合。如 x 有三个后继状态分别为 SG(a),SG(b),SG(c),那么SG(x) = mex{SG(a),SG(b),SG(c)}。 这样 集合S 的终态必然是空集,所以SG函数的终态为 SG(x) = 0,当且仅当 x 为必败点P时。
 
 
 
我的理解:
试想一个博弈以不能操作为输,后手的保证胜利大多数基于对称方案,也就是说,对于先手的每一步,后手都有对应的步,异或同0异1刚好解决这个问题。
我对mex运算的理解是这是一种分层,各种取数方法博弈的dp停留在必胜必负这一层,如果多个类似的游戏综合起来就会有http://poj.org/problem?id=2425这棵树一样会有一些有很多分支的节点。sg函数的mex操作完成了节点的分层,然后再进行游戏的前后手操作匹配,异或和如果为0则表明后手对先手的每一步都能匹配,此时后手必胜。
 
其实我觉得这个理解并不是很重要,直接套板子也能写,但是我不知道原理就会浑身难受所以。。还是找了资料大概理解了一下原理。

sg函数总结的更多相关文章

  1. HDU 5795 A Simple Nim 打表求SG函数的规律

    A Simple Nim Problem Description   Two players take turns picking candies from n heaps,the player wh ...

  2. 【转】博弈—SG函数

    转自:http://chensmiles.blog.163.com/blog/static/12146399120104644141326/ http://blog.csdn.net/xiaofeng ...

  3. HDU 1848 Fibonacci again and again【SG函数】

    对于Nim博弈,任何奇异局势(a,b,c)都有a^b^c=0. 延伸: 任何奇异局势(a1, a2,… an)都满足 a1^a2^…^an=0 首先定义mex(minimal excludant)运算 ...

  4. POJ2425 A Chess Game[博弈论 SG函数]

    A Chess Game Time Limit: 3000MS   Memory Limit: 65536K Total Submissions: 3917   Accepted: 1596 Desc ...

  5. bzoj1188 [HNOI2007]分裂游戏 博弈论 sg函数的应用

    1188: [HNOI2007]分裂游戏 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 973  Solved: 599[Submit][Status ...

  6. BZOJ1188 [HNOI2007]分裂游戏(SG函数)

    传送门 拿到这道题就知道是典型的博弈论,但是却不知道怎么设计它的SG函数.看了解析一类组合游戏这篇论文之后才知道这道题应该怎么做. 这道题需要奇特的模型转换.即把每一个石子当做一堆石子,且原来在第i堆 ...

  7. sg函数与博弈论2

    参考链接: http://blog.sina.com.cn/s/blog_51cea4040100h3l9.html 这篇主要就是讲anti-sg.multi-sg和every-sg的. 例1 poj ...

  8. sg函数与博弈论

    这个标题是不是看起来很厉害呢... 我们首先来看一个最简单的游戏.比如我现在有一堆石子,有p个,每次可以取走若干个(不能不取),不能取的人就输了. 现在假设有两个人要玩这个游戏,一个人先手,一个人后手 ...

  9. hdu1536&&hdu3023 SG函数模板及其运用

    S-Nim Time Limit: 1000MS   Memory Limit: 32768KB   64bit IO Format: %I64d & %I64u Submit Status ...

  10. HDU1848 Fibonacci again and again SG函数

    Fibonacci again and again Time Limit: 1000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Jav ...

随机推荐

  1. 51nod 1486 大大走格子——dp

    有一个h行w列的棋盘,里面有一些格子是不能走的,现在要求从左上角走到右下角的方案数. Input 单组测试数据. 第一行有三个整数h, w, n(1 ≤ h, w ≤ 10^5, 1 ≤ n ≤ 20 ...

  2. bzoj 4773: 负环——倍增

    Description 在忘记考虑负环之后,黎瑟的算法又出错了.对于边带权的有向图 G = (V, E),请找出一个点数最小的环,使得 环上的边权和为负数.保证图中不包含重边和自环. Input 第1 ...

  3. nginx与php-fpm通讯方式

    nginx和php-fpm的通信方式有两种,一种是tcp socket的方式,一种是unix socke方式. tcp sockettcp socket的优点是可以跨服务器,当nginx和php-fp ...

  4. B. Complete the Word(Codeforces Round #372 (Div. 2)) 尺取大法

    B. Complete the Word time limit per test 2 seconds memory limit per test 256 megabytes input standar ...

  5. xgboost/gbdt在调参时为什么树的深度很少就能达到很高的精度?

    问题: 用xgboost/gbdt在在调参的时候把树的最大深度调成6就有很高的精度了.但是用DecisionTree/RandomForest的时候需要把树的深度调到15或更高.用RandomFore ...

  6. 任务调度框架kunka

    kunka kunka是一个任务调度框架.用户只需要在Task接口中实现自己要执行的功能,并且选择合适的执行器,放入TaskManager中,就可以了完成整个任务了. 实现细节 整个任务信息存放在内存 ...

  7. Python3 学习第一天总结

    一.python介绍 1.python是一门动态解释性的强类型定义语言: 简单解释一下: 定义变量不需要定义类型的为动态语言:典型的有Python和Ruby,反之定义变量需要定义类型的为静态语言:典型 ...

  8. GDB实战

    程序中除了一目了然的Bug之外都需要一定的调试手段来分析到底错在哪.到目前为止我们的调试手段只有一种:根据程序执行时的出错现象假设错误原因,然后在代码中适当的位置插入 printf ,执行程序并分析打 ...

  9. 33.Search in Rotated Sorted Array---二分变形---《剑指offer》面试题8

    题目链接 题目大意:在一个旋转数组中,判断给定的target是否存在于该旋转数组中.数组中没有重复数值.例子如下: 法一:二分.确定中间元素之后,就要判断下一步是遍历左数组还是遍历右数组.如果左数组有 ...

  10. yml格式

    是什么? yml文件扩展名是YAML的缩写,YAML于2001年出现,是一种数据描述语言,和xml类似 为什么用它? 我们在做javaweb项目的时候最常见的就是.xml配置文件和properitie ...