One day, Alice and Bob felt bored again, Bob knows Alice is a girl who loves math and is just learning something about matrix, so he decided to make a crazy problem for her.

Bob has a six-faced dice which has numbers 0, 1, 2, 3, 4 and 5 on each face. At first, he will choose a number N (4 <= N <= 1000), and for N times, he keeps throwing his dice for K times (2 <=K <= 6) and writes down its number on the top face to make an N*K matrix A, in which each element is not less than 0 and not greater than 5. Then he does similar thing again with a bit difference: he keeps throwing his dice for N times and each time repeat it for K times to write down a K*N matrix B, in which each element is not less than 0 and not greater than 5. With the two matrix A and B formed, Alice’s task is to perform the following 4-step calculation.

Step 1: Calculate a new N*N matrix C = A*B. 
Step 2: Calculate M = C^(N*N). 
Step 3: For each element x in M, calculate x % 6. All the remainders form a new matrix M’. 
Step 4: Calculate the sum of all the elements in M’.

Bob just made this problem for kidding but he sees Alice taking it serious, so he also wonders what the answer is. And then Bob turn to you for help because he is not good at math.

InputThe input contains several test cases. Each test case starts with two integer N and K, indicating the numbers N and K described above. Then N lines follow, and each line has K integers between 0 and 5, representing matrix A. Then K lines follow, and each line has N integers between 0 and 5, representing matrix B.

The end of input is indicated by N = K = 0.OutputFor each case, output the sum of all the elements in M’ in a line.Sample Input

4 2
5 5
4 4
5 4
0 0
4 2 5 5
1 3 1 5
6 3
1 2 3
0 3 0
2 3 4
4 3 2
2 5 5
0 5 0
3 4 5 1 1 0
5 3 2 3 3 2
3 1 5 4 5 2
0 0

Sample Output

14
56

给你一个n*m和一个m*n的矩阵,经过上面的4步之后会得到一个新的矩阵M,求M中所有元素的总和。

n是一个可以到1000的数,但是m巨小,最多到6,矩阵开1000会爆栈,我们可以转化一下:

A*B^(n*n) = A*B*A*B*A*B...*A*B = A*(B*A)^(n*n-1)*B

B*A是一个m*m的矩阵,嘿嘿~~~

//Asimple
#include <iostream>
#include <algorithm>
#include <cstdio>
#include <cstdlib>
#include <queue>
#include <vector>
#include <string>
#include <cstring>
#include <stack>
#include <set>
#include <map>
#include <cmath>
#define swap(a,b,t) t = a, a = b, b = t
#define CLS(a, v) memset(a, v, sizeof(a))
#define test() cout<<"============"<<endl
#define debug(a) cout << #a << " = " << a <<endl
#define dobug(a, b) cout << #a << " = " << a << " " << #b << " = " << b << endl
using namespace std;
typedef long long ll;
const int N = ;
const ll MOD=;
const int INF = ( << );
const double PI=atan(1.0)*;
const int maxn = +;
const ll mod = ;
ll n, m, len, ans, sum, v, w, T, num;
int A[maxn][maxn], B[maxn][maxn];
int c1[maxn][maxn], c2[maxn][maxn]; struct Matrix {
long long grid[N][N];
int row,col;
Matrix():row(N),col(N) {
memset(grid, , sizeof grid);
}
Matrix(int row, int col):row(row),col(col) {
memset(grid, , sizeof grid);
} //矩阵乘法
Matrix operator *(const Matrix &b) {
Matrix res(row, b.col);
for(int i = ; i<res.row; i++)
for(int j = ; j<res.col; j++)
for(int k = ;k<col; k++)
res[i][j] = (res[i][j] + grid[i][k] * b.grid[k][j] + MOD) % MOD;
return res;
} //矩阵快速幂
Matrix operator ^(long long exp) {
Matrix res(row, col);
for(int i = ; i < row; i++)
res[i][i] = ;
Matrix temp = *this;
for(; exp > ; exp >>= , temp = temp * temp)
if(exp & ) res = temp * res;
return res;
} long long* operator[](int index) {
return grid[index];
} void print() {
for(int i = ; i <row; i++) {
for(int j = ; j < col-; j++)
printf("%d ",grid[i][j]);
printf("%d\n",grid[i][col-]);
}
}
}; void input(){
ios_base::sync_with_stdio(false);
while( cin >> n >> m && (n+m) ) {
for(int i=; i<n; i++)
for(int j=; j<m; j++)
cin >> A[i][j];
for(int i=; i<m; i++)
for(int j=; j<n; j++)
cin >> B[i][j];
Matrix C(m, m);
for(int i=; i<m; i++) {
for(int j=; j<m; j++) {
C[i][j] = ;
for(int k=; k<n; k++) {
C[i][j] += ( B[i][k]*A[k][j]);
C[i][j] %= ;
}
}
}
C = C^(n*n-); for(int i=; i<n; i++) {
for(int j=; j<n; j++) {
c1[i][j] = ;
for(int k=; k<m; k++) {
c1[i][j] += A[i][k]*C[k][j];
c1[i][j] %= ;
}
}
}
for(int i=; i<n; i++) {
for(int j=; j<n; j++) {
c2[i][j] = ;
for(int k=; k<m; k++) {
c2[i][j] += c1[i][k]*B[k][j];
}
}
} ans = ;
for(int i=; i<n; i++) {
for(int j=; j<n; j++) {
ans += (c2[i][j]%MOD);
}
}
cout << ans << endl;
}
} int main(){
input();
return ;
}

Fast Matrix Calculation HDU - 4965的更多相关文章

  1. hdu 4965 Fast Matrix Calculation(矩阵高速幂)

    题目链接.hdu 4965 Fast Matrix Calculation 题目大意:给定两个矩阵A,B,分别为N*K和K*N. 矩阵C = A*B 矩阵M=CN∗N 将矩阵M中的全部元素取模6,得到 ...

  2. HDU 4965 Fast Matrix Calculation(矩阵高速幂)

    HDU 4965 Fast Matrix Calculation 题目链接 矩阵相乘为AxBxAxB...乘nn次.能够变成Ax(BxAxBxA...)xB,中间乘n n - 1次,这样中间的矩阵一个 ...

  3. hdu4965 Fast Matrix Calculation (矩阵快速幂 结合律

    http://acm.hdu.edu.cn/showproblem.php?pid=4965 2014 Multi-University Training Contest 9 1006 Fast Ma ...

  4. HDU4965 Fast Matrix Calculation —— 矩阵乘法、快速幂

    题目链接:https://vjudge.net/problem/HDU-4965 Fast Matrix Calculation Time Limit: 2000/1000 MS (Java/Othe ...

  5. hdu 4965 Fast Matrix Calculation

    题目链接:hdu 4965,题目大意:给你一个 n*k 的矩阵 A 和一个 k*n 的矩阵 B,定义矩阵 C= A*B,然后矩阵 M= C^(n*n),矩阵中一切元素皆 mod 6,最后求出 M 中所 ...

  6. HDU - 4965 Fast Matrix Calculation 【矩阵快速幂】

    题目链接 http://acm.hdu.edu.cn/showproblem.php?pid=4965 题意 给出两个矩阵 一个A: n * k 一个B: k * n C = A * B M = (A ...

  7. HDU 4965 Fast Matrix Calculation 矩阵快速幂

    题意: 给出一个\(n \times k\)的矩阵\(A\)和一个\(k \times n\)的矩阵\(B\),其中\(4 \leq N \leq 1000, \, 2 \leq K \leq 6\) ...

  8. HDU 4965 Fast Matrix Calculation 矩阵乘法 乘法结合律

    一种奇葩的写法,纪念一下当时的RE. #include <iostream> #include <cstdio> #include <cstring> #inclu ...

  9. hdu4965 Fast Matrix Calculation 矩阵快速幂

    One day, Alice and Bob felt bored again, Bob knows Alice is a girl who loves math and is just learni ...

随机推荐

  1. 安装 RabbitMQ

    Ubuntu 16.04 安装 RabbitMQ #1 更新 $ sudo apt-get update $ sudo apt-get upgrade #2 安装Erlang $ cd /tmp $ ...

  2. python DBUtils 线程池 连接 Postgresql(多线程公用线程池,DB-API : psycopg2)

    一.DBUtils DBUtils 是一套允许线程化 Python 程序可以安全和有效的访问数据库的模块,DBUtils提供两种外部接口: PersistentDB :提供线程专用的数据库连接,并自动 ...

  3. Win系统的快捷键

    用了Macos觉得win系统不好用,其实不然,win也有很多方便的快捷键. win系统的快捷键: super/Alt+Tab键切换应用程序,而不是用鼠标点,切换多任务,super就是win win+D ...

  4. L - Father Christmas flymouse

    来源poj3160 After retirement as contestant from WHU ACM Team, flymouse volunteered to do the odds and ...

  5. vue项目实战中的增、删、改、查

    参考:https://blog.csdn.net/xr510002594/article/details/81665762?utm_source=blogxgwz0 https://blog.csdn ...

  6. HttpRequest获得服务端和客户端的详细信息

    参考文档:http://blog.csdn.net/u012104100/article/details/43051301 http://blog.csdn.net/u011162260/articl ...

  7. 三、CSS语言

    CSS语言 1.概述:CSS (Cascading Style Sheets)是层叠样式表用来定义网页的显示效果.可以解决html代码对样式定义的重复,提高了后期样式代码的可维护性,并增强了网页的显示 ...

  8. 几个dos命令

  9. javascript数组的实例属性(方法)

    javascript的所有数组实例对象,除了可以给自己增删属性之外:都会从Array.prototype继承属性(方法).修改Array的原型会影响所有的数组实例. 数组实例的属性: Array.pr ...

  10. ERROR org.hibernate.hql.internal.ast.ErrorCounter unexpected token: form 异常解决

    ERROR org.hibernate.hql.internal.ast.ErrorCounter unexpected token: form 异常解决 根据异常提示:我找了我的MySQL语句:果然 ...