Fast Matrix Calculation HDU - 4965
Bob has a six-faced dice which has numbers 0, 1, 2, 3, 4 and 5 on each face. At first, he will choose a number N (4 <= N <= 1000), and for N times, he keeps throwing his dice for K times (2 <=K <= 6) and writes down its number on the top face to make an N*K matrix A, in which each element is not less than 0 and not greater than 5. Then he does similar thing again with a bit difference: he keeps throwing his dice for N times and each time repeat it for K times to write down a K*N matrix B, in which each element is not less than 0 and not greater than 5. With the two matrix A and B formed, Alice’s task is to perform the following 4-step calculation.
Step 1: Calculate a new N*N matrix C = A*B.
Step 2: Calculate M = C^(N*N).
Step 3: For each element x in M, calculate x % 6. All the remainders form a new matrix M’.
Step 4: Calculate the sum of all the elements in M’.
Bob just made this problem for kidding but he sees Alice taking it serious, so he also wonders what the answer is. And then Bob turn to you for help because he is not good at math.
InputThe input contains several test cases. Each test case starts with two integer N and K, indicating the numbers N and K described above. Then N lines follow, and each line has K integers between 0 and 5, representing matrix A. Then K lines follow, and each line has N integers between 0 and 5, representing matrix B.
The end of input is indicated by N = K = 0.OutputFor each case, output the sum of all the elements in M’ in a line.Sample Input
4 2
5 5
4 4
5 4
0 0
4 2 5 5
1 3 1 5
6 3
1 2 3
0 3 0
2 3 4
4 3 2
2 5 5
0 5 0
3 4 5 1 1 0
5 3 2 3 3 2
3 1 5 4 5 2
0 0
Sample Output
14
56
给你一个n*m和一个m*n的矩阵,经过上面的4步之后会得到一个新的矩阵M,求M中所有元素的总和。
n是一个可以到1000的数,但是m巨小,最多到6,矩阵开1000会爆栈,我们可以转化一下:
A*B^(n*n) = A*B*A*B*A*B...*A*B = A*(B*A)^(n*n-1)*B
B*A是一个m*m的矩阵,嘿嘿~~~
//Asimple
#include <iostream>
#include <algorithm>
#include <cstdio>
#include <cstdlib>
#include <queue>
#include <vector>
#include <string>
#include <cstring>
#include <stack>
#include <set>
#include <map>
#include <cmath>
#define swap(a,b,t) t = a, a = b, b = t
#define CLS(a, v) memset(a, v, sizeof(a))
#define test() cout<<"============"<<endl
#define debug(a) cout << #a << " = " << a <<endl
#define dobug(a, b) cout << #a << " = " << a << " " << #b << " = " << b << endl
using namespace std;
typedef long long ll;
const int N = ;
const ll MOD=;
const int INF = ( << );
const double PI=atan(1.0)*;
const int maxn = +;
const ll mod = ;
ll n, m, len, ans, sum, v, w, T, num;
int A[maxn][maxn], B[maxn][maxn];
int c1[maxn][maxn], c2[maxn][maxn]; struct Matrix {
long long grid[N][N];
int row,col;
Matrix():row(N),col(N) {
memset(grid, , sizeof grid);
}
Matrix(int row, int col):row(row),col(col) {
memset(grid, , sizeof grid);
} //矩阵乘法
Matrix operator *(const Matrix &b) {
Matrix res(row, b.col);
for(int i = ; i<res.row; i++)
for(int j = ; j<res.col; j++)
for(int k = ;k<col; k++)
res[i][j] = (res[i][j] + grid[i][k] * b.grid[k][j] + MOD) % MOD;
return res;
} //矩阵快速幂
Matrix operator ^(long long exp) {
Matrix res(row, col);
for(int i = ; i < row; i++)
res[i][i] = ;
Matrix temp = *this;
for(; exp > ; exp >>= , temp = temp * temp)
if(exp & ) res = temp * res;
return res;
} long long* operator[](int index) {
return grid[index];
} void print() {
for(int i = ; i <row; i++) {
for(int j = ; j < col-; j++)
printf("%d ",grid[i][j]);
printf("%d\n",grid[i][col-]);
}
}
}; void input(){
ios_base::sync_with_stdio(false);
while( cin >> n >> m && (n+m) ) {
for(int i=; i<n; i++)
for(int j=; j<m; j++)
cin >> A[i][j];
for(int i=; i<m; i++)
for(int j=; j<n; j++)
cin >> B[i][j];
Matrix C(m, m);
for(int i=; i<m; i++) {
for(int j=; j<m; j++) {
C[i][j] = ;
for(int k=; k<n; k++) {
C[i][j] += ( B[i][k]*A[k][j]);
C[i][j] %= ;
}
}
}
C = C^(n*n-); for(int i=; i<n; i++) {
for(int j=; j<n; j++) {
c1[i][j] = ;
for(int k=; k<m; k++) {
c1[i][j] += A[i][k]*C[k][j];
c1[i][j] %= ;
}
}
}
for(int i=; i<n; i++) {
for(int j=; j<n; j++) {
c2[i][j] = ;
for(int k=; k<m; k++) {
c2[i][j] += c1[i][k]*B[k][j];
}
}
} ans = ;
for(int i=; i<n; i++) {
for(int j=; j<n; j++) {
ans += (c2[i][j]%MOD);
}
}
cout << ans << endl;
}
} int main(){
input();
return ;
}
Fast Matrix Calculation HDU - 4965的更多相关文章
- hdu 4965 Fast Matrix Calculation(矩阵高速幂)
题目链接.hdu 4965 Fast Matrix Calculation 题目大意:给定两个矩阵A,B,分别为N*K和K*N. 矩阵C = A*B 矩阵M=CN∗N 将矩阵M中的全部元素取模6,得到 ...
- HDU 4965 Fast Matrix Calculation(矩阵高速幂)
HDU 4965 Fast Matrix Calculation 题目链接 矩阵相乘为AxBxAxB...乘nn次.能够变成Ax(BxAxBxA...)xB,中间乘n n - 1次,这样中间的矩阵一个 ...
- hdu4965 Fast Matrix Calculation (矩阵快速幂 结合律
http://acm.hdu.edu.cn/showproblem.php?pid=4965 2014 Multi-University Training Contest 9 1006 Fast Ma ...
- HDU4965 Fast Matrix Calculation —— 矩阵乘法、快速幂
题目链接:https://vjudge.net/problem/HDU-4965 Fast Matrix Calculation Time Limit: 2000/1000 MS (Java/Othe ...
- hdu 4965 Fast Matrix Calculation
题目链接:hdu 4965,题目大意:给你一个 n*k 的矩阵 A 和一个 k*n 的矩阵 B,定义矩阵 C= A*B,然后矩阵 M= C^(n*n),矩阵中一切元素皆 mod 6,最后求出 M 中所 ...
- HDU - 4965 Fast Matrix Calculation 【矩阵快速幂】
题目链接 http://acm.hdu.edu.cn/showproblem.php?pid=4965 题意 给出两个矩阵 一个A: n * k 一个B: k * n C = A * B M = (A ...
- HDU 4965 Fast Matrix Calculation 矩阵快速幂
题意: 给出一个\(n \times k\)的矩阵\(A\)和一个\(k \times n\)的矩阵\(B\),其中\(4 \leq N \leq 1000, \, 2 \leq K \leq 6\) ...
- HDU 4965 Fast Matrix Calculation 矩阵乘法 乘法结合律
一种奇葩的写法,纪念一下当时的RE. #include <iostream> #include <cstdio> #include <cstring> #inclu ...
- hdu4965 Fast Matrix Calculation 矩阵快速幂
One day, Alice and Bob felt bored again, Bob knows Alice is a girl who loves math and is just learni ...
随机推荐
- Python的安装以及编译器的安装
首先要想写python语言,要安装并配置python的环境,点击python下载即可,当然需要看下自己电脑适合下载的版本,64位还是32位的即可. 安装一般情况安装在C盘即可,选择添加变量的配置,完成 ...
- JS 一张图理解prototype、proto和constructor的关系
转载于原文地址:https://www.cnblogs.com/xiaohuochai/p/5721552.html(感谢大神的总结) 前面的话 javascript里的关系又多又乱.作用域链是一种单 ...
- ganglia-gmond.conf配置文件
运行下列命令可以生成gmond默认配置文件: User@host:$ gmond -t 配置文件由大括弧括起来的几个section组成.这些section可以粗略划分为两个逻辑分类.第一类中的sect ...
- HTML使用CSS样式的方法
在html网页中引入css样式表主要有一下四种方法 1.行内引入 <p ></p> 2.嵌入式 <style type="text/css"> ...
- VS Code打开使用IDEA搭建的Spring Boot项目运行提示"snakeyaml was not found on the classpath"错误
今天用VS Code打开之前基于IDEA搭建并开发的Spring Boot项目,启动调试后出现如下错误: 17:43:05.214 [restartedMain] ERROR org.springfr ...
- ToolBar样式颜色,图标设置
extends:http://blog.csdn.net/w1054993544/article/details/48339565 <resources> <style name=& ...
- share drive 无效
docker设置的share dirve怎么按都无效 试了几遍都不行,想想刚才电脑系统更新了,然后查了下百度,发现是电脑策略的问题,设置成经典的就可以了
- python中print(obj) 与sys.stdout.write()的区别
print(obj) 其实等价于sys.stdout.write(obj+\n),而\r表示回到行首,所以需要输出进度条时可以用以下代码 rate = float(has_sent) / float( ...
- day14 十四、三元运算符,推导式,匿名内置函数
一.三元(目)运算符 1.就是if...else...语法糖 前提:if和else只有一条语句 # 原来的做法 cmd = input('cmd:>>>') if cmd.isdig ...
- One Technical Problem: Can one process load two different c libraries simutaneously, such as uclibc and glibc?
For some special reasons, there is a possible case which need to load uclibc and glibc in one proces ...