# 线性代数
# numpy.linalg模块包含线性代数的函数。使用这个模块,可以计算逆矩阵、求特征值、解线性方程组以及求解行列式等。

import numpy as np

# 1. 计算逆矩阵
# 创建矩阵
A = np.mat("0 1 2;1 0 3;4 -3 8")
print (A)
#[[ 0 1 2]
# [ 1 0 3]
# [ 4 -3 8]]

# 使用inv函数计算逆矩阵
inv = np.linalg.inv(A)
print (inv)
#[[-4.5 7. -1.5]
# [-2. 4. -1. ]
# [ 1.5 -2. 0.5]]

# 检查原矩阵和求得的逆矩阵相乘的结果为单位矩阵
print (A * inv)
#[[ 1. 0. 0.]
# [ 0. 1. 0.]
# [ 0. 0. 1.]]

# 注:矩阵必须是方阵且可逆,否则会抛出LinAlgError异常。

# 2. 求解线性方程组
# numpy.linalg中的函数solve可以求解形如 Ax = b 的线性方程组,其中 A 为矩阵,b 为一维或二维的数组,x 是未知变量

import numpy as np

#创建矩阵和数组
B = np.mat("1 -2 1;0 2 -8;-4 5 9")
b = np.array([0,8,-9])

# 调用solve函数求解线性方程
x = np.linalg.solve(B,b)
print (x)
#[ 29. 16. 3.]

# 使用dot函数检查求得的解是否正确
print (np.dot(B , x))
# [[ 0. 8. -9.]]

# 3. 特征值和特征向量
# 特征值(eigenvalue)即方程 Ax = ax 的根,是一个标量。其中,A 是一个二维矩阵,x 是一个一维向量。特征向量(eigenvector)是关于特征值的向量
# numpy.linalg模块中,eigvals函数可以计算矩阵的特征值,而eig函数可以返回一个包含特征值和对应的特征向量的元组

import numpy as np

# 创建一个矩阵
C = np.mat("3 -2;1 0")

# 调用eigvals函数求解特征值
c0 = np.linalg.eigvals(C)
print (c0)
# [ 2. 1.]

# 使用eig函数求解特征值和特征向量 (该函数将返回一个元组,按列排放着特征值和对应的特征向量,其中第一列为特征值,第二列为特征向量)
c1,c2 = np.linalg.eig(C)
print (c1)
# [ 2. 1.]
print (c2)
#[[ 0.89442719 0.70710678]
# [ 0.4472136 0.70710678]]

# 使用dot函数验证求得的解是否正确
for i in range(len(c1)):
print ("left:",np.dot(C,c2[:,i]))
print ("right:",c1[i] * c2[:,i])
#left: [[ 1.78885438]
# [ 0.89442719]]
#right: [[ 1.78885438]
# [ 0.89442719]]
#left: [[ 0.70710678]
# [ 0.70710678]]
#right: [[ 0.70710678]
# [ 0.70710678]]

# 4.奇异值分解
# SVD(Singular Value Decomposition,奇异值分解)是一种因子分解运算,将一个矩阵分解为3个矩阵的乘积
# numpy.linalg模块中的svd函数可以对矩阵进行奇异值分解。该函数返回3个矩阵——U、Sigma和V,其中U和V是正交矩阵,Sigma包含输入矩阵的奇异值。

import numpy as np

# 分解矩阵
D = np.mat("4 11 14;8 7 -2")
# 使用svd函数分解矩阵
U,Sigma,V = np.linalg.svd(D,full_matrices=False)
print ("U:",U)
#U: [[-0.9486833 -0.31622777]
# [-0.31622777 0.9486833 ]]
print ("Sigma:",Sigma)
#Sigma: [ 18.97366596 9.48683298]
print ("V",V)
#V [[-0.33333333 -0.66666667 -0.66666667]
# [ 0.66666667 0.33333333 -0.66666667]]
# 结果包含等式中左右两端的两个正交矩阵U和V,以及中间的奇异值矩阵Sigma

# 使用diag函数生成完整的奇异值矩阵。将分解出的3个矩阵相乘
print (U * np.diag(Sigma) * V)
#[[ 4. 11. 14.]
# [ 8. 7. -2.]]

# 5. 广义逆矩阵
# 使用numpy.linalg模块中的pinv函数进行求解,
# 注:inv函数只接受方阵作为输入矩阵,而pinv函数则没有这个限制

import numpy as np

# 创建一个矩阵
E = np.mat("4 11 14;8 7 -2")
# 使用pinv函数计算广义逆矩阵
pseudoinv = np.linalg.pinv(E)
print (pseudoinv)
#[[-0.00555556 0.07222222]
# [ 0.02222222 0.04444444]
# [ 0.05555556 -0.05555556]]

# 将原矩阵和得到的广义逆矩阵相乘
print (E * pseudoinv)
#[[ 1.00000000e+00 -5.55111512e-16]
# [ 0.00000000e+00 1.00000000e+00]]

# 6. 行列式
# numpy.linalg模块中的det函数可以计算矩阵的行列式

import numpy as np

# 计算矩阵的行列式
F = np.mat("3 4;5 6")
# 使用det函数计算行列式
print (np.linalg.det(F))
# -2.0

numpy linalg模块的更多相关文章

  1. python中numpy计算数组的行列式numpy.linalg.det()

    numpy.linalg.det numpy.linalg.det(a)[source] 计算任何一个数组a的行列式,但是这里要求数组的最后两个维度必须是方阵. 参数: a : (..., M, M) ...

  2. numpy.random模块常用函数解析

    numpy.random模块中常用函数解析 numpy.random模块官方文档 1. numpy.random.rand(d0, d1, ..., dn)Create an array of the ...

  3. Python:numpy.ma模块

    翻译总结自:The numpy.ma module - NumPy v1.21 Manual 前言 ma是Mask的缩写,关于Mask的解释,如果有PS的基础,可以理解为蒙版,如果有计算机网络的基础, ...

  4. 21、numpy数组模块

    一.numpy简介 numpy官方文档:https://docs.scipy.org/doc/numpy/reference/?v=20190307135750 numpy是Python的一种开源的数 ...

  5. python矩阵运算大全(linalg模块)

    python矩阵的运算大全 python矩阵运算可以用numpy模块,也可以用scipy模块,主要运算包括以下几种: #1-1python矩阵运算所需模块 import numpy as npimpo ...

  6. Numpy入门(三):Numpy概率模块和线性代数模块

    Numpy中经常使用到的两个模块是概率模块和线性代数模块,random 和 linalg 两个模块. 概率模块 产生二项分布的随机数:np.random.binomial(n,p,size=-),其中 ...

  7. numpy.linalg.norm(求范数)

    1.linalg=linear(线性)+algebra(代数),norm则表示范数. 2.函数参数 x_norm=np.linalg.norm(x, ord=None, axis=None, keep ...

  8. numpy.linalg.svd函数

    转载自:python之SVD函数介绍 函数:np.linalg.svd(a,full_matrices=1,compute_uv=1) 参数: a是一个形如\((M,N)\)的矩阵 full_matr ...

  9. numpy linalg

    线性代数 np.mat("0 1 0;1 0 0;0 0 1") np.linalg.inv(A)

随机推荐

  1. saltstack通过jinja模板,grains方式将配置的变量值写入到配置文件中?

    需求描述: 在通过saltstack进行jinja模板获取值的时候,可以通过grains的方式,获取一些操作系统相关的信息,比如,OS,ip地址等,在这里演示下,做个记录. 演示: 1.修改sls文件 ...

  2. saltstack通过jinja模板,将变量值增加到配置文件中?通过引用变量值修改配置文件?

    需求描述: 在使用saltstack的时候,有的时候,需要根据不同的变量来增加配置,比如,bind,监听端口,这些都可以通过变量写入,并且在配置的时候引用,下面是一个例子,用来演示,如何使用jinja ...

  3. 如何在 Fiddler Script 中 自定义 修改 Request 、 Response

    Fiddler是一个http协议调试代理工具,方便进行http请求的拦截处理.改写请求.返回值等. 在Rules菜单下:  此次更改请求 头 ,so go to OnBeforeRequest 或者 ...

  4. int和Integer有什么区别

    Java是一个近乎纯洁的面向对象编程语言,但是为了编程的方便还是引入了基本数据类型,但是为了能够将这些基本数据类型当成对象操作,Java为每一个基本数据类型都引入了对应的包装类型(wrapper cl ...

  5. 语法的二义性和token的超前扫描

    语法的二义性 JavaCC不能分析所有EBNF描述的语法,因为EBNF描述的语法本质上具有二义性的情况.C语言中if语句用JavaCC的EBNF可以是如下描述: "if" &quo ...

  6. Python实现代码统计工具——终极加速篇

    Python实现代码统计工具--终极加速篇 声明 本文对于先前系列文章中实现的C/Python代码统计工具(CPLineCounter),通过C扩展接口重写核心算法加以优化,并与网上常见的统计工具做对 ...

  7. 用svg绘制圣诞帽

    今天是圣诞节,无意中看到csdn博客上面给我的头像带了个圣诞帽,比较好奇,想看看csdn是怎么实现的,果然用的是svg实现,不过代码有点冗长. <html> <body> &l ...

  8. 【CF434E】Furukawa Nagisa's Tree 点分治

    [CF434E]Furukawa Nagisa's Tree 题意:一棵n个点的树,点有点权.定义$G(a,b)$表示:我们将树上从a走到b经过的点都拿出来,设这些点的点权分别为$z_0,z_1... ...

  9. wpgcms---字符串截取

    在使用wpgcms做项目的时候,会用到要对描述做字符串截取,具体方法如下: {{ contentInfo.summary|slice(0,75) }}

  10. js 函数中的this

    资料 function 函数 没有"this"的持久概念, 调用函数时,创建this function hello(thing) { console.log(this + &quo ...