终于开始写dp了,还很不熟练

It is a little known fact that cows love apples. Farmer John has two apple trees (which are conveniently numbered 1 and 2) in his field, each full of apples. Bessie cannot reach the apples when they are on the tree, so she must wait for them to fall. However, she must catch them in the air since the apples bruise when they hit the ground (and no one wants to eat bruised apples). Bessie is a quick eater, so an apple she does catch is eaten in just a few seconds.

Each minute, one of the two apple trees drops an apple. Bessie, having much practice, can catch an apple if she is standing under a tree from which one falls. While Bessie can walk between the two trees quickly (in much less than a minute), she can stand under only one tree at any time. Moreover, cows do not get a lot of exercise, so she is not willing to walk back and forth between the trees endlessly (and thus misses some apples).

Apples fall (one each minute) for T (1 <= T <= 1,000) minutes. Bessie is willing to walk back and forth at most W (1 <= W <= 30) times. Given which tree will drop an apple each minute, determine the maximum number of apples which Bessie can catch. Bessie starts at tree 1.

Input

* Line 1: Two space separated integers: T and W

* Lines 2..T+1: 1 or 2: the tree that will drop an apple each minute.

Output

* Line 1: The maximum number of apples Bessie can catch without walking more than W times.

Sample Input

7 2
2
1
1
2
2
1
1

Sample Output

6

Hint

INPUT DETAILS:

Seven apples fall - one from tree 2, then two in a row from tree 1, then two in a row from tree 2, then two in a row from tree 1. Bessie is willing to walk from one tree to the other twice.

OUTPUT DETAILS:

Bessie can catch six apples by staying under tree 1 until the first two have dropped, then moving to tree 2 for the next two, then returning back to tree 1 for the final two.

 
分析:状态:dp[i][j]表示在第i分钟时,已经移动了j次后得到的苹果数量。
状态转移方程:dp[i][j] = max(dp[i-1][j], dp[i-1][j-1]),然后判断当前是否在第i分钟掉苹果的那颗树下,是的话,dp[i][j]++。
对状态转移方程的解释如下:第i分钟能得到的苹果数量,等于在第i-1分钟时,在树1和树2下得到苹果的最大值。j为偶数则在树1下面,奇数则在树2下面。

dp 动态规划 之C - Apple Catching 简单基础的更多相关文章

  1. poj 2385 Apple Catching 基础dp

    Apple Catching   Description It is a little known fact that cows love apples. Farmer John has two ap ...

  2. poj2385 Apple Catching (线性dp)

    题目传送门 Apple Catching Apple Catching Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 154 ...

  3. Apple Catching(dp)

    Apple Catching Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 9831   Accepted: 4779 De ...

  4. BZOJ 3384: [Usaco2004 Nov]Apple Catching 接苹果( dp )

    dp dp( x , k ) = max( dp( x - 1 , k - 1 ) + *** , dp( x - 1 , k ) + *** ) *** = 0 or 1 ,根据情况 (BZOJ 1 ...

  5. 【POJ】2385 Apple Catching(dp)

    Apple Catching Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 13447   Accepted: 6549 D ...

  6. 【POJ - 2385】Apple Catching(动态规划)

    Apple Catching 直接翻译了 Descriptions 有两棵APP树,编号为1,2.每一秒,这两棵APP树中的其中一棵会掉一个APP.每一秒,你可以选择在当前APP树下接APP,或者迅速 ...

  7. POJ 2385 Apple Catching【DP】

    题意:2棵苹果树在T分钟内每分钟随机由某一棵苹果树掉下一个苹果,奶牛站在树#1下等着吃苹果,它最多愿意移动W次,问它最多能吃到几个苹果.思路:不妨按时间来思考,一给定时刻i,转移次数已知为j, 则它只 ...

  8. Day 5 笔记 dp动态规划

    Day 5 笔记 dp动态规划 一.动态规划的基本思路 就是用一些子状态来算出全局状态. 特点: 无后效性--狗熊掰棒子,所以滚动什么的最好了 可以分解性--每个大的状态可以分解成较小的步骤完成 dp ...

  9. (转)dp动态规划分类详解

    dp动态规划分类详解 转自:http://blog.csdn.NET/cc_again/article/details/25866971 动态规划一直是ACM竞赛中的重点,同时又是难点,因为该算法时间 ...

随机推荐

  1. ASP.NET MVC 5 Authentication Breakdown

    In my previous post, "ASP.NET MVC 5 Authentication Breakdown", I broke down all the parts ...

  2. python的Web框架,html分页

    使用简单的算法得出页码数,然后在html中获取即可.仅供参考. views的写法 def crm_stu(request): section = '教师后台管理页' search = request. ...

  3. python装饰器带括号和不带括号的语法和用法

    装饰器的写法补充: 通常装饰器的写法是@func(),而有的时候为了减少出错率,可能会写成@func,没有()括号,这时我们可以这样定义,来减少括号.下面通过两个例子还看. 一般装饰器的写法: def ...

  4. nginx配置指南

    nginx(读作engine x)是一款设计优秀的Http服务器, 其占用内存少, 负载能力强且稳定性高, 正在被越来越多的用户所采用. nginx可以为HTTP, HTTPS, SMTP, POP3 ...

  5. css布局------上下高度固定,中间高度自适应容器

    HTML <body> <div class="container"> <div class="header"></d ...

  6. npm包

    https://www.cnblogs.com/xinxingyu/p/5736244.html     node - glob模块讲解 https://github.com/isaacs/node- ...

  7. SQL Server 2008 management studio 无法连接到(local)解决方法

    背景:安装VS2010之后,自带的 SQL Server 2008 Express 不具备management studio,于是下载了SQL Server 2008 Express  版本并全新安装 ...

  8. 如何获得刚刚插入数据的id

    create table tblInsert ( id ,) primary key, name ) ); insert into tblInsert(name) values('张三'); sele ...

  9. [PHP] 算法-复制复杂链表的PHP实现

    复杂链表的复制: 1.在旧链表中每个结点的后面复制出一个结点,隔代 2.把旧链表的随机指向部分,复制到新添加的结点上 3.把新结点从旧链表中拆分出来成新链表 1. linklist=head whil ...

  10. JavaScript实现省市区的三级联动

    JavaScript实现省市区的三级联动 <!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN" &qu ...