终于开始写dp了,还很不熟练

It is a little known fact that cows love apples. Farmer John has two apple trees (which are conveniently numbered 1 and 2) in his field, each full of apples. Bessie cannot reach the apples when they are on the tree, so she must wait for them to fall. However, she must catch them in the air since the apples bruise when they hit the ground (and no one wants to eat bruised apples). Bessie is a quick eater, so an apple she does catch is eaten in just a few seconds.

Each minute, one of the two apple trees drops an apple. Bessie, having much practice, can catch an apple if she is standing under a tree from which one falls. While Bessie can walk between the two trees quickly (in much less than a minute), she can stand under only one tree at any time. Moreover, cows do not get a lot of exercise, so she is not willing to walk back and forth between the trees endlessly (and thus misses some apples).

Apples fall (one each minute) for T (1 <= T <= 1,000) minutes. Bessie is willing to walk back and forth at most W (1 <= W <= 30) times. Given which tree will drop an apple each minute, determine the maximum number of apples which Bessie can catch. Bessie starts at tree 1.

Input

* Line 1: Two space separated integers: T and W

* Lines 2..T+1: 1 or 2: the tree that will drop an apple each minute.

Output

* Line 1: The maximum number of apples Bessie can catch without walking more than W times.

Sample Input

7 2
2
1
1
2
2
1
1

Sample Output

6

Hint

INPUT DETAILS:

Seven apples fall - one from tree 2, then two in a row from tree 1, then two in a row from tree 2, then two in a row from tree 1. Bessie is willing to walk from one tree to the other twice.

OUTPUT DETAILS:

Bessie can catch six apples by staying under tree 1 until the first two have dropped, then moving to tree 2 for the next two, then returning back to tree 1 for the final two.

 
分析:状态:dp[i][j]表示在第i分钟时,已经移动了j次后得到的苹果数量。
状态转移方程:dp[i][j] = max(dp[i-1][j], dp[i-1][j-1]),然后判断当前是否在第i分钟掉苹果的那颗树下,是的话,dp[i][j]++。
对状态转移方程的解释如下:第i分钟能得到的苹果数量,等于在第i-1分钟时,在树1和树2下得到苹果的最大值。j为偶数则在树1下面,奇数则在树2下面。

dp 动态规划 之C - Apple Catching 简单基础的更多相关文章

  1. poj 2385 Apple Catching 基础dp

    Apple Catching   Description It is a little known fact that cows love apples. Farmer John has two ap ...

  2. poj2385 Apple Catching (线性dp)

    题目传送门 Apple Catching Apple Catching Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 154 ...

  3. Apple Catching(dp)

    Apple Catching Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 9831   Accepted: 4779 De ...

  4. BZOJ 3384: [Usaco2004 Nov]Apple Catching 接苹果( dp )

    dp dp( x , k ) = max( dp( x - 1 , k - 1 ) + *** , dp( x - 1 , k ) + *** ) *** = 0 or 1 ,根据情况 (BZOJ 1 ...

  5. 【POJ】2385 Apple Catching(dp)

    Apple Catching Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 13447   Accepted: 6549 D ...

  6. 【POJ - 2385】Apple Catching(动态规划)

    Apple Catching 直接翻译了 Descriptions 有两棵APP树,编号为1,2.每一秒,这两棵APP树中的其中一棵会掉一个APP.每一秒,你可以选择在当前APP树下接APP,或者迅速 ...

  7. POJ 2385 Apple Catching【DP】

    题意:2棵苹果树在T分钟内每分钟随机由某一棵苹果树掉下一个苹果,奶牛站在树#1下等着吃苹果,它最多愿意移动W次,问它最多能吃到几个苹果.思路:不妨按时间来思考,一给定时刻i,转移次数已知为j, 则它只 ...

  8. Day 5 笔记 dp动态规划

    Day 5 笔记 dp动态规划 一.动态规划的基本思路 就是用一些子状态来算出全局状态. 特点: 无后效性--狗熊掰棒子,所以滚动什么的最好了 可以分解性--每个大的状态可以分解成较小的步骤完成 dp ...

  9. (转)dp动态规划分类详解

    dp动态规划分类详解 转自:http://blog.csdn.NET/cc_again/article/details/25866971 动态规划一直是ACM竞赛中的重点,同时又是难点,因为该算法时间 ...

随机推荐

  1. php防止刷流量攻击

    <?php //查询禁止IP $ip =$_SERVER['REMOTE_ADDR']; $fileht=".htaccess2"; if(!file_exists($fil ...

  2. python的Web框架,auth权限系统

    使用django默认权限系统实现用户登录退出 判断用户是否登录 request.user.is_authenticated 返回的为bool值 一个简单的登录视图范式: # 导包 from djang ...

  3. 从零搭建生产环境的ghost2.0博客

    当前安装过程是在ghost cli 1.9.2上的,由于ghost更新特别快,我安装我个人博客cmlanche.com的时候还是1.9.1,当时没碰到啥问题,到1.9.2就有一点点不一样了,所以要注意 ...

  4. 序列化(pickle,shelve,json,configparser)

    一,序列化 在我们存储数据或者网络传输数据的时候,需要对我们的对象进行处理,把对象处理成方便存储和传输的数据结构,这个过程叫序列化,不同的序列化,结果也不同,但是目的是一样的,都是为了存储和传输. 在 ...

  5. https Java SSL Exception protocol_version

    在java代码中,使用HttpClient爬取https页面时,遇到了这个bug:javax.net.ssl.SSLException: Received fatal alert: protocol_ ...

  6. 所生成项目的处理器架构“MSIL”与引用“Microsoft.AspNet.Scaffolding.12.0, Version=12.0.0.0, Culture=neutral, PublicKeyToken=b03f5f7f11d50a3a, processorArchitecture=x86”的处理器架构“x86”不匹配。

    生成成功后: 3>C:\Program Files (x86)\MSBuild\14.0\bin\Microsoft.Common.CurrentVersion.targets(1820,5): ...

  7. 微信小程序开发BUG经验总结

    摘要: 常见的微信小程序BUG! 小程序开发越来越热,开发中遇到各种各样的bug,在此总结了一些比较容易掉进去的坑分享给大家. 1. new Date跨平台兼容性问题 在Andriod使用new Da ...

  8. 百度网盘满速下载器:pandownload

    http://pandownload.com/index.html 作者提示:1.软件使用 C++ 编写2.大文件需要等待一段时间才会有下载速度3.文件名含有特殊字符可能会下载出错,请重命名再下载4. ...

  9. canvas-tangram.html

    <!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF-8&quo ...

  10. 【读书笔记】iOS-Objective-C编程

    Objective-C中的类可以继承自任何一个顶级类,需要注意的是,虽然NSObject是最常见的顶级类,但是它并不是唯一的顶级类,例如,NSProxy就是和NSObject一样的顶级类,所以你不能说 ...