终于开始写dp了,还很不熟练

It is a little known fact that cows love apples. Farmer John has two apple trees (which are conveniently numbered 1 and 2) in his field, each full of apples. Bessie cannot reach the apples when they are on the tree, so she must wait for them to fall. However, she must catch them in the air since the apples bruise when they hit the ground (and no one wants to eat bruised apples). Bessie is a quick eater, so an apple she does catch is eaten in just a few seconds.

Each minute, one of the two apple trees drops an apple. Bessie, having much practice, can catch an apple if she is standing under a tree from which one falls. While Bessie can walk between the two trees quickly (in much less than a minute), she can stand under only one tree at any time. Moreover, cows do not get a lot of exercise, so she is not willing to walk back and forth between the trees endlessly (and thus misses some apples).

Apples fall (one each minute) for T (1 <= T <= 1,000) minutes. Bessie is willing to walk back and forth at most W (1 <= W <= 30) times. Given which tree will drop an apple each minute, determine the maximum number of apples which Bessie can catch. Bessie starts at tree 1.

Input

* Line 1: Two space separated integers: T and W

* Lines 2..T+1: 1 or 2: the tree that will drop an apple each minute.

Output

* Line 1: The maximum number of apples Bessie can catch without walking more than W times.

Sample Input

7 2
2
1
1
2
2
1
1

Sample Output

6

Hint

INPUT DETAILS:

Seven apples fall - one from tree 2, then two in a row from tree 1, then two in a row from tree 2, then two in a row from tree 1. Bessie is willing to walk from one tree to the other twice.

OUTPUT DETAILS:

Bessie can catch six apples by staying under tree 1 until the first two have dropped, then moving to tree 2 for the next two, then returning back to tree 1 for the final two.

 
分析:状态:dp[i][j]表示在第i分钟时,已经移动了j次后得到的苹果数量。
状态转移方程:dp[i][j] = max(dp[i-1][j], dp[i-1][j-1]),然后判断当前是否在第i分钟掉苹果的那颗树下,是的话,dp[i][j]++。
对状态转移方程的解释如下:第i分钟能得到的苹果数量,等于在第i-1分钟时,在树1和树2下得到苹果的最大值。j为偶数则在树1下面,奇数则在树2下面。

dp 动态规划 之C - Apple Catching 简单基础的更多相关文章

  1. poj 2385 Apple Catching 基础dp

    Apple Catching   Description It is a little known fact that cows love apples. Farmer John has two ap ...

  2. poj2385 Apple Catching (线性dp)

    题目传送门 Apple Catching Apple Catching Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 154 ...

  3. Apple Catching(dp)

    Apple Catching Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 9831   Accepted: 4779 De ...

  4. BZOJ 3384: [Usaco2004 Nov]Apple Catching 接苹果( dp )

    dp dp( x , k ) = max( dp( x - 1 , k - 1 ) + *** , dp( x - 1 , k ) + *** ) *** = 0 or 1 ,根据情况 (BZOJ 1 ...

  5. 【POJ】2385 Apple Catching(dp)

    Apple Catching Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 13447   Accepted: 6549 D ...

  6. 【POJ - 2385】Apple Catching(动态规划)

    Apple Catching 直接翻译了 Descriptions 有两棵APP树,编号为1,2.每一秒,这两棵APP树中的其中一棵会掉一个APP.每一秒,你可以选择在当前APP树下接APP,或者迅速 ...

  7. POJ 2385 Apple Catching【DP】

    题意:2棵苹果树在T分钟内每分钟随机由某一棵苹果树掉下一个苹果,奶牛站在树#1下等着吃苹果,它最多愿意移动W次,问它最多能吃到几个苹果.思路:不妨按时间来思考,一给定时刻i,转移次数已知为j, 则它只 ...

  8. Day 5 笔记 dp动态规划

    Day 5 笔记 dp动态规划 一.动态规划的基本思路 就是用一些子状态来算出全局状态. 特点: 无后效性--狗熊掰棒子,所以滚动什么的最好了 可以分解性--每个大的状态可以分解成较小的步骤完成 dp ...

  9. (转)dp动态规划分类详解

    dp动态规划分类详解 转自:http://blog.csdn.NET/cc_again/article/details/25866971 动态规划一直是ACM竞赛中的重点,同时又是难点,因为该算法时间 ...

随机推荐

  1. shiro源码篇 - shiro的session共享,你值得拥有

    前言 开心一刻 老师对小明说:"乳就是小的意思,比如乳猪就是小猪,乳名就是小名,请你用乳字造个句" 小明:"我家很穷,只能住在40平米的乳房" 老师:" ...

  2. Java基础系列--ArrayList集合

    原创作品,可以转载,但是请标注出处地址:http://www.cnblogs.com/V1haoge/p/8494618.html 一.概述 ArrayList是Java集合体系中最常使用,也是最简单 ...

  3. POJ 3037 Skiing(如何使用SPFA求解二维最短路问题)

    题目链接: https://cn.vjudge.net/problem/POJ-3037 Bessie and the rest of Farmer John's cows are taking a ...

  4. Sherman-Morrison公式及其应用

    Sherman-Morrison公式   Sherman-Morrison公式以 Jack Sherman 和 Winifred J. Morrison命名,在线性代数中,是求解逆矩阵的一种方法.本篇 ...

  5. Docker版本变化和新版安装

    Docker从1.13版本之后采用时间线的方式作为版本号,分为社区版CE和企业版EE. 社区版是免费提供给个人开发者和小型团体使用的,企业版会提供额外的收费服务,比如经过官方测试认证过的基础设施.容器 ...

  6. 非常完善的Log4net详细说明(转)

    最可能来源:https://blog.csdn.net/ydm19891101/article/details/50561638 其它转载者:http://www.cnblogs.com/zhangc ...

  7. C#服务端判断客户端socket是否已断开的方法

    刚开始,用Socket类的Connected属性来实现,却发现行不通,connected只表示  是在上次 还是 操作时连接到远程主机.如果在这之后[连接的另一方]断开了,它还一直返回true, 除非 ...

  8. 【Java深入研究】7、ThreadLocal详解

    ThreadLocal翻译成中文比较准确的叫法应该是:线程局部变量. 这个玩意有什么用处,或者说为什么要有这么一个东东?先解释一下,在并发编程的时候,成员变量如果不做任何处理其实是线程不安全的,各个线 ...

  9. java_二进制的前导的零

    题目内容: 计算机内部用二进制来表达所有的值.一个十进制的数字,比如18,在一个32位的计算机内部被表达为00000000000000000000000000011000.可以看到,从左边数过来,在第 ...

  10. Flash饼状图统计代码

    index.html文件: <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http ...