dp 动态规划 之C - Apple Catching 简单基础
终于开始写dp了,还很不熟练
Each minute, one of the two apple trees drops an apple. Bessie, having much practice, can catch an apple if she is standing under a tree from which one falls. While Bessie can walk between the two trees quickly (in much less than a minute), she can stand under only one tree at any time. Moreover, cows do not get a lot of exercise, so she is not willing to walk back and forth between the trees endlessly (and thus misses some apples).
Apples fall (one each minute) for T (1 <= T <= 1,000) minutes. Bessie is willing to walk back and forth at most W (1 <= W <= 30) times. Given which tree will drop an apple each minute, determine the maximum number of apples which Bessie can catch. Bessie starts at tree 1.
Input
* Lines 2..T+1: 1 or 2: the tree that will drop an apple each minute.
Output
Sample Input
7 2
2
1
1
2
2
1
1
Sample Output
6
Hint
Seven apples fall - one from tree 2, then two in a row from tree 1, then two in a row from tree 2, then two in a row from tree 1. Bessie is willing to walk from one tree to the other twice.
OUTPUT DETAILS:
Bessie can catch six apples by staying under tree 1 until the first two have dropped, then moving to tree 2 for the next two, then returning back to tree 1 for the final two.
状态转移方程:dp[i][j] = max(dp[i-1][j], dp[i-1][j-1]),然后判断当前是否在第i分钟掉苹果的那颗树下,是的话,dp[i][j]++。
对状态转移方程的解释如下:第i分钟能得到的苹果数量,等于在第i-1分钟时,在树1和树2下得到苹果的最大值。j为偶数则在树1下面,奇数则在树2下面。
!
dp 动态规划 之C - Apple Catching 简单基础的更多相关文章
- poj 2385 Apple Catching 基础dp
Apple Catching Description It is a little known fact that cows love apples. Farmer John has two ap ...
- poj2385 Apple Catching (线性dp)
题目传送门 Apple Catching Apple Catching Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 154 ...
- Apple Catching(dp)
Apple Catching Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 9831 Accepted: 4779 De ...
- BZOJ 3384: [Usaco2004 Nov]Apple Catching 接苹果( dp )
dp dp( x , k ) = max( dp( x - 1 , k - 1 ) + *** , dp( x - 1 , k ) + *** ) *** = 0 or 1 ,根据情况 (BZOJ 1 ...
- 【POJ】2385 Apple Catching(dp)
Apple Catching Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 13447 Accepted: 6549 D ...
- 【POJ - 2385】Apple Catching(动态规划)
Apple Catching 直接翻译了 Descriptions 有两棵APP树,编号为1,2.每一秒,这两棵APP树中的其中一棵会掉一个APP.每一秒,你可以选择在当前APP树下接APP,或者迅速 ...
- POJ 2385 Apple Catching【DP】
题意:2棵苹果树在T分钟内每分钟随机由某一棵苹果树掉下一个苹果,奶牛站在树#1下等着吃苹果,它最多愿意移动W次,问它最多能吃到几个苹果.思路:不妨按时间来思考,一给定时刻i,转移次数已知为j, 则它只 ...
- Day 5 笔记 dp动态规划
Day 5 笔记 dp动态规划 一.动态规划的基本思路 就是用一些子状态来算出全局状态. 特点: 无后效性--狗熊掰棒子,所以滚动什么的最好了 可以分解性--每个大的状态可以分解成较小的步骤完成 dp ...
- (转)dp动态规划分类详解
dp动态规划分类详解 转自:http://blog.csdn.NET/cc_again/article/details/25866971 动态规划一直是ACM竞赛中的重点,同时又是难点,因为该算法时间 ...
随机推荐
- mysql主从复制总结
第一步:开启所有MYSQL服务器的BIN日志,每台服务器设置一个唯一的server-id的值(默认是1,一般取IP最后一段) 修改主服务器(master)的my.cnf [mysqld] log-bi ...
- IdentityServer4 中文文档 -5- (简介)支持和咨询选项
IdentityServer4 中文文档 -5- (简介)支持和咨询选项 原文:http://docs.identityserver.io/en/release/intro/support.html ...
- 百度api查询多个地址的经纬度的问题
在使用百度api查询多个地址的经纬度的时候,由于百度api提供的经纬度查询方法是回调函数,并且后续操作必须等经纬度获取完成才能进行,问题就存在于怎么判断所有地点是否都回调完成了,问了之前的一个前端大佬 ...
- java_分解质因数
题目内容: 每个非素数(合数)都可以写成几个素数(也可称为质数)相乘的形式,这几个素数就都叫做这个合数的质因数.比如,6可以被分解为2x3,而24可以被分解为2x2x2x3. 现在,你的程序要读入一个 ...
- js .map方法
map这里的map不是“地图”的意思,而是指“映射”.[].map(); 基本用法跟forEach方法类似: array.map(callback,[ thisObject]); callback的参 ...
- design mode(php)
前段时间看了下设计模式 参考,以及head first设计模式,简要如下 ## OO原则 * 封装变化* 多用组合,少用继承* 针对接口编程,不针对实现编程* 为交互对象之间的松耦合设计而努力* 开闭 ...
- 洛谷P3193 [HNOI2008]GT考试(dp 矩阵乘法)
题意 题目链接 Sol 设\(f[i][j]\)表示枚举到位置串的第i位,当前与未知串的第j位匹配,那么我们只要保证在转移的时候永远不会匹配即可 预处理出已知串的每个位置加上某个字符后能转移到的位置, ...
- JavaSE——UDP协议网络编程(二)
在 UDP 网络编程中,发送方与接收方没有建立联系,没有明显的服务器端和客户端的区别. 类 DatagramSocket: 此类表示用来发送和接收数据报包的套接字. 主要的构造方法: Datagram ...
- [VUE ERROR] Error in render: "TypeError: Cannot create property 'header' on boolean 'true'"
项目基于ElemnetUi进行的开发,在引入第三方扩展库 vue-element-extends 之后使用它的表格组件报了这个错 解决方案: 1. 删除项目中的 node_modules 2. 删除 ...
- Salesforce的翻译工作台
翻译工作台 Salesforce提供了翻译工作台.在这里管理员可以对各种数据进行翻译设置,包括对象信息.字段信息.验证规则.错误信息等. 翻译工作台集中了翻译的内容,从而使得管理员或开发者不需要在其他 ...