有些算法,适合从它产生的动机,如何设计与解决问题这样正向地去介绍。但KMP算法真的不适合这样去学。最好的办法是先搞清楚它所用的数据结构是什么,再搞清楚怎么用,最后为什么的问题就会有恍然大悟的感觉。我试着从这个思路再介绍一下。大家只需要记住一点,PMT是什么东西。然后自己临时推这个算法也是能推出来的,完全不需要死记硬背。KMP算法的核心,是一个被称为部分匹配表(Partial Match Table)的数组。我觉得理解KMP的最大障碍就是很多人在看了很多关于KMP的文章之后,仍然搞不懂PMT中的值代表了什么意思。这里我们抛开所有的枝枝蔓蔓,先来解释一下这个数据到底是什么。对于字符串“abababca”,它的PMT如下表所示:

就像例子中所示的,如果待匹配的模式字符串有8个字符,那么PMT就会有8个值。

我先解释一下字符串的前缀和后缀。如果字符串A和B,存在A=BS,其中S是任意的非空字符串,那就称B为A的前缀。例如,”Harry”的前缀包括{”H”, ”Ha”, ”Har”, ”Harr”},我们把所有前缀组成的集合,称为字符串的前缀集合。同样可以定义后缀A=SB, 其中S是任意的非空字符串,那就称B为A的后缀,例如,”Potter”的后缀包括{”otter”, ”tter”, ”ter”, ”er”, ”r”},然后把所有后缀组成的集合,称为字符串的后缀集合。要注意的是,字符串本身并不是自己的后缀。

有了这个定义,就可以说明PMT中的值的意义了。PMT中的值是字符串的前缀集合与后缀集合的交集中最长元素的长度。例如,对于”aba”,它的前缀集合为{”a”, ”ab”},后缀 集合为{”ba”, ”a”}。两个集合的交集为{”a”},那么长度最长的元素就是字符串”a”了,长 度为1,所以对于”aba”而言,它在PMT表中对应的值就是1。再比如,对于字符串”ababa”,它的前缀集合为{”a”, ”ab”, ”aba”, ”abab”},它的后缀集合为{”baba”, ”aba”, ”ba”, ”a”}, 两个集合的交集为{”a”, ”aba”},其中最长的元素为”aba”,长度为3。

好了,解释清楚这个表是什么之后,我们再来看如何使用这个表来加速字符串的查找,以及这样用的道理是什么。如图 1.12 所示,要在主字符串"ababababca"中查找模式字符串"abababca"。如果在 j 处字符不匹配,那么由于前边所说的模式字符串 PMT 的性质,主字符串中 i 指针之前的 PMT[j −1] 位就一定与模式字符串的第 0 位至第 PMT[j−1] 位是相同的。这是因为主字符串在 i 位失配,也就意味着主字符串从 i−j 到 i 这一段是与模式字符串的 0 到 j 这一段是完全相同的。而我们上面也解释了,模式字符串从 0 到 j−1 ,在这个例子中就是”ababab”,其前缀集合与后缀集合的交集的最长元素为”abab”, 长度为4。所以就可以断言,主字符串中i指针之前的 4 位一定与模式字符串的第0位至第 4 位是相同的,即长度为 4 的后缀与前缀相同。这样一来,我们就可以将这些字符段的比较省略掉。具体的做法是,保持i指针不动,然后将j指针指向模式字符串的PMT[j −1]位即可。

简言之,以图中的例子来说,在 i 处失配,那么主字符串和模式字符串的前边6位就是相同的。又因为模式字符串的前6位,它的前4位前缀和后4位后缀是相同的,所以我们推知主字符串i之前的4位和模式字符串开头的4位是相同的。就是图中的灰色部分。那这部分就不用再比较了。

有了上面的思路,我们就可以使用PMT加速字符串的查找了。我们看到如果是在 j 位 失配,那么影响 j 指针回溯的位置的其实是第 j −1 位的 PMT 值,所以为了编程的方便, 我们不直接使用PMT数组,而是将PMT数组向后偏移一位。我们把新得到的这个数组称为next数组。下面给出根据next数组进行字符串匹配加速的字符串匹配程序。其中要注意的一个技巧是,在把PMT进行向右偏移时,第0位的值,我们将其设成了-1,这只是为了编程的方便,并没有其他的意义。在本节的例子中,next数组如下表所示。

 
  1.  
    int KMP(char * t, char * p)
  2.  
    {
  3.  
    int i = 0;
  4.  
    int j = 0;
  5.  
     
  6.  
    while (i < strlen(t) && j < strlen(p))
  7.  
    {
  8.  
    if (j == -1 || t[i] == p[j])
  9.  
    {
  10.  
    i++;
  11.  
    j++;
  12.  
    }
  13.  
    else
  14.  
    j = next[j];
  15.  
    }
  16.  
     
  17.  
    if (j == strlen(p))
  18.  
    return i - j;
  19.  
    else
  20.  
    return -1;
  21.  
    }

好了,讲到这里,其实KMP算法的主体就已经讲解完了。你会发现,其实KMP算法的动机是很简单的,解决的方案也很简单。远没有很多教材和算法书里所讲的那么乱七八糟,只要搞明白了PMT的意义,其实整个算法都迎刃而解。

现在,我们再看一下如何编程快速求得next数组。其实,求next数组的过程完全可以看成字符串匹配的过程,即以模式字符串为主字符串,以模式字符串的前缀为目标字符串,一旦字符串匹配成功,那么当前的next值就是匹配成功的字符串的长度。

具体来说,就是从模式字符串的第一位(注意,不包括第0位)开始对自身进行匹配运算。 在任一位置,能匹配的最长长度就是当前位置的next值。如下图所示。

求next数组值的程序如下所示:

  1.  
    void getNext(char * p, int * next)
  2.  
    {
  3.  
    next[0] = -1;
  4.  
    int i = 0, j = -1;
  5.  
     
  6.  
    while (i < strlen(p))
  7.  
    {
  8.  
    if (j == -1 || p[i] == p[j])
  9.  
    {
  10.  
    ++i;
  11.  
    ++j;
  12.  
    next[i] = j;
  13.  
    }
  14.  
    else
  15.  
    j = next[j];
  16.  
    }
  17.  
    }

作者:海纳
链接:https://www.zhihu.com/question/21923021/answer/281346746
来源:知乎
著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。

算法-最通俗易懂的KMP算法详解的更多相关文章

  1. [转]EM算法(Expectation Maximization Algorithm)详解

    https://blog.csdn.net/zhihua_oba/article/details/73776553 EM算法(Expectation Maximization Algorithm)详解 ...

  2. Python聚类算法之基本K均值实例详解

    Python聚类算法之基本K均值实例详解 本文实例讲述了Python聚类算法之基本K均值运算技巧.分享给大家供大家参考,具体如下: 基本K均值 :选择 K 个初始质心,其中 K 是用户指定的参数,即所 ...

  3. 搜索引擎算法研究专题五:TF-IDF详解

    搜索引擎算法研究专题五:TF-IDF详解 2017年12月19日 ⁄ 搜索技术 ⁄ 共 1396字 ⁄ 字号 小 中 大 ⁄ 评论关闭   TF-IDF(term frequency–inverse ...

  4. 目标检测算法(一):R-CNN详解

    参考博文:https://blog.csdn.net/hjimce/article/details/50187029 R-CNN(Regions with CNN features)--2014年提出 ...

  5. 二分算法题目训练(四)——Robin Hood详解

    codeforces672D——Robin Hood详解 Robin Hood 问题描述(google翻译) 我们都知道罗宾汉令人印象深刻的故事.罗宾汉利用他的射箭技巧和他的智慧从富人那里偷钱,然后把 ...

  6. 二分算法题目训练(一)——Shell Pyramid详解

    HDU2446——Shell Pyramid 详解 Shell Pyramid 题目描述(Google 翻译的) 在17世纪,由于雷鸣般的喧嚣,浓烟和炽热的火焰,海上的战斗与现代战争一样.但那时,大炮 ...

  7. DPLL 算法(求解k-SAT问题)详解(C++实现)

    \(\text{By}\ \mathsf{Chesium}\) DPLL 算法,全称为 Davis-Putnam-Logemann-Loveland(戴维斯-普特南-洛吉曼-洛夫兰德)算法,是一种完备 ...

  8. 串匹配算法讲解 -----BF、KMP算法

      参考文章: http://www.matrix67.com/blog/archives/115     KMP算法详解 http://blog.csdn.net/yaochunnian/artic ...

  9. 大话数据结构(十二)java程序——KMP算法及改进的KMP算法实现

    1.朴素的模式匹配算法 朴素的模式匹配算法:就是对主串的每个字符作为子串开头,与要连接的字符串进行匹配.对主串做大循环,每个字符开头做T的长度的小循环,直到成功匹配或全部遍历完成为止. 又称BF算法 ...

随机推荐

  1. ubuntu 使用dpkg手动安装deb包时发生循环依赖的解决办法

    将循环依赖的所有包放到同一个命令行里一起安装,如: sudo dpkg -i libnss3-nssdb_3.28.4-0ubuntu0.14.04.4_all.deb libnss3_3.28.4- ...

  2. [LeetCode] 系统刷题2_排列组合

    要用到backtracking,是否要跟backtracking放到一起总结? 适用范围: 几乎所有搜索问题 什么时候输出 哪些情况需要跳过 相关题目: [LeetCode] 78. Subsets ...

  3. tensorflow神奇问题

    运行tensorflow程序时,遇到了各种奇葩的问题,比如: 1.Import Error: DLL load failed: The specified module could not be fo ...

  4. .Net 多线程 (1) Task

    多线程是一种有效提高程序工作效率的方法.当然为了效率需要使用更多的cpu,内存等资源. 并发是两个队列交替使用一台咖啡机,并行是两个队列同时使用两台咖啡机,如果串行,一个队列使用一台咖啡机,那么哪怕前 ...

  5. MySQL数据排序asc、desc

    数据排序 asc.desc1.单一字段排序order by 字段名称 作用: 通过哪个或哪些字段进行排序 含义: 排序采用 order by 子句,order by 后面跟上排序字段,排序字段可以放多 ...

  6. Docker Kubernetes 命令行创建容器

    Docker Kubernetes 命令行创建容器 环境: 系统:Centos 7.4 x64 Docker版本:18.09.0 Kubernetes版本:v1.8 管理节点:192.168.1.79 ...

  7. Docker Kubernetes 高可用架构设计

    Docker Kubernetes 高可用架构设计 官方方案:保证master端不发生单点故障. 官方使用一台Load Balancer负载均衡代理3台master端,终端与etcd与work Nod ...

  8. STATS 326 Applied Time Series

    STATS 326Applied Time SeriesASSIGNMENT THREEDue: 2 May 2019, 11.00 am(Worth 6% of your final grade)H ...

  9. 剑指offer(61)序列化二叉树

    题目描述 请实现两个函数,分别用来序列化和反序列化二叉树 题目分析 首先拿到题目时候,我先想到的是什么是序列化二叉树?序列化主要就是在前后端交互时候需要转换下,毕竟网络传输的是流式数据(二进制或者文本 ...

  10. markdown的css样式(自己写的)

    markdown的css样式,这些是我自己配置的,感觉可以的话你可以添加下,不适合自己的话可以仿照第二种自己写个比较好的css样式. 第一种 /* RESET ==================== ...