题目链接:传送门

题目:

E. Vasya and a Tree
time limit per test
seconds
memory limit per test
megabytes
input
standard input
output
standard output Vasya has a tree consisting of n
vertices with root in vertex . At first all vertices has written on it. Let d(i,j)
be the distance between vertices i and j, i.e. number of edges in the shortest path from i to j. Also, let's denote k-subtree of vertex x — set of vertices y such that next two conditions are met: x is the ancestor of y
(each vertex is the ancestor of itself);
d(x,y)≤k . Vasya needs you to process m
queries. The i-th query is a triple vi, di and xi. For each query Vasya adds value xi to each vertex from di-subtree of vi . Report to Vasya all values, written on vertices of the tree after processing all queries.
Input The first line contains single integer n
(≤n≤⋅ ) — number of vertices in the tree. Each of next n−
lines contains two integers x and y (≤x,y≤n) — edge between vertices x and y . It is guarantied that given graph is a tree. Next line contains single integer m
(≤m≤⋅ ) — number of queries. Each of next m
lines contains three integers vi, di, xi (≤vi≤n, ≤di≤, ≤xi≤) — description of the i -th query.
Output Print n
integers. The i-th integers is the value, written in the i -th vertex after processing all queries.
Examples
Input
Copy Output
Copy Input
Copy Output
Copy Note In the first exapmle initial values in vertices are ,,,,
. After the first query values will be equal to ,,,,. After the second query values will be equal to ,,,,. After the third query values will be equal to ,,,,.

题目大意:

  给定一棵有N个节点的有向树,根节点为1。

  有M次操作,对以vi为根的深度为di的子树上的所有节点权值加xi

  1≤n,m≤3⋅105,1 ≤ vi ≤ n,0 ≤ di ≤ 109,1 ≤ xi ≤ 109

思路:

  离线处理,把每个更新都放到对应的vi上,然后从节点1开始dfs。

  dfs时遇到一个节点后,把这个节点所有的“操作”都拿出来:

  对于每个“操作”,更新当前深度到本次操作影响的最大深度[dep, dep+di]区间内的值加上xi,回溯的时候再减掉xi。这里可以用树状数组维护。

  每个节点的答案就是被搜索到之后,“操作”结束之后的当前深度的值。

  到这里就已经可以AC了。

  但是树状数组的logn的复杂度还可以继续优化,用一个前缀和数组sum维护,更新[dep, dep+di]区间时,只要让sum[dep] += xi,sum[dep+di+1] -= xi,就可以实现整个区间的加减了。

  有人问(就是我):“中间的明明没有加上去啊???”

  “。。。对,但是你是一个个跑过来的啊,把之前的前缀加过来不就好了?”(w神)

  period。

UPDATE:

  其实就是dfs的时候顺便维护前缀和,遇到当前深度的时候把当前深度的权值(可能是负的)都捡起来,然后进入下一层,回溯的时候再把捡起来的权值都丢掉。

代码:

#include <bits/stdc++.h>

using namespace std;
typedef long long ll;
const int MAX_NM = ; int n, m, t, act;
string opt[];
string acts[];
ll F[MAX_NM], A[][MAX_NM][MAX_NM], AAA[MAX_NM][MAX_NM]; inline int num(int i, int j) {
return (i-)*m + j;
} void mul(ll f[MAX_NM], ll a[MAX_NM][MAX_NM]) {
ll c[MAX_NM];
memset(c, , sizeof c);
for (int j = ; j < MAX_NM; j++)
for (int k = ; k < MAX_NM; k++)
c[j] += f[k] * a[k][j];
memcpy(f, c, sizeof c);
} void mulb(ll a[MAX_NM][MAX_NM], ll b[MAX_NM][MAX_NM]) {
ll c[MAX_NM][MAX_NM];
memset(c, , sizeof c);
for (int i = ; i < MAX_NM; i++)
for (int j = ; j < MAX_NM; j++)
for (int k = ; k < MAX_NM; k++)
c[i][j] += a[i][k]*b[k][j];
memcpy(a, c, sizeof c);
} void mulself(ll a[MAX_NM][MAX_NM]) {
ll c[MAX_NM][MAX_NM];
memset(c, , sizeof c);
for (int i = ; i < MAX_NM; i++)
for (int j = ; j < MAX_NM; j++)
for (int k = ; k < MAX_NM; k++)
c[i][j] += a[i][k]*a[k][j];
memcpy(a, c, sizeof c);
} void init()
{
memset(A, , sizeof A);
memset(F, , sizeof F);
F[] = ;
for (int k = ; k < ; k++) {
A[k][][] = ;
for (int i = ; i <= n; i++) {
for (int j = ; j <= m; j++) {
int index = opt[i-][j-] - '';
int indey = k % acts[index].size();
char ch = acts[index][indey]; if (isupper(ch)) {
switch (ch) {
case 'N':
if (i- >= )
A[k][num(i, j)][num(i-, j)] = ; break;
case 'S':
if (i+ <= n)
A[k][num(i, j)][num(i+, j)] = ; break;
case 'W':
if (j- >= )
A[k][num(i, j)][num(i, j-)] = ; break;
case 'E':
if (j+ <= m)
A[k][num(i, j)][num(i, j+)] = ; break;
case 'D':
A[k][num(i, j)][num(i, j)] = ;
}
}
if (isdigit(ch)) {
A[k][num(i, j)][num(i, j)] = ;
A[k][][num(i, j)] = ch - '';
} }
}
}
for (int i = ; i < MAX_NM; i++)
AAA[i][i] = ;
for (int k = ; k < ; k++)
mulb(AAA, A[k]);
} int main()
{
cin >> n >> m >> t >> act;
for (int i = ; i < n; i++)
cin >> opt[i];
for (int i = ; i < act; i++)
cin >> acts[i];
init();
int q = t/;
int r = t%;
// t = q*60 + r;
for (; q; q >>= ) {
if (q&)
mul(F, AAA);
mulself(AAA);
}
for (int i = ; i < r; i++)
mul(F, A[i]);
ll ans = ;
for (int i = ; i < MAX_NM; i++)
ans = max(ans, F[i]);
cout << ans << endl;
return ;
}

参考博客:

  wyboooo's blog

Codeforces1076E. Vasya and a Tree(dfs+离线+动态维护前缀和)的更多相关文章

  1. CF Edu54 E. Vasya and a Tree DFS+树状数组

    Vasya and a Tree 题意: 给定一棵树,对树有3e5的操作,每次操作为,把树上某个节点的不超过d的子节点都加上值x; 思路: 多开一个vector记录每个点上的操作.dfs这颗树,同时以 ...

  2. CodeForces-1076E Vasya and a Tree

    CodeForces - 1076E Problem Description: Vasya has a tree consisting of n vertices with root in verte ...

  3. HH的项链 树状数组动态维护前缀

    #include<cstdio> #include<algorithm> #include<cstring> using namespace std; const ...

  4. BZOJ2690: 字符串游戏(平衡树动态维护Dfs序)

    Description 给定N个仅有a~z组成的字符串ai,每个字符串都有一个权值vi,有M次操作,操作分三种: Cv x v':把第x个字符串的权值修改为v' Cs x a':把第x个字符串修改成a ...

  5. Vasya and a Tree CodeForces - 1076E(线段树+dfs)

    I - Vasya and a Tree CodeForces - 1076E 其实参考完别人的思路,写完程序交上去,还是没理解啥意思..昨晚再仔细想了想.终于弄明白了(有可能不对 题意是有一棵树n个 ...

  6. CF1076E:Vasya and a Tree(DFS&差分)

    Vasya has a tree consisting of n n vertices with root in vertex 1 1 . At first all vertices has 0 0 ...

  7. Vasya and a Tree CodeForces - 1076E (线段树 + dfs)

    题面 Vasya has a tree consisting of n vertices with root in vertex 1. At first all vertices has 0 writ ...

  8. Codeforces 1076 E - Vasya and a Tree

    E - Vasya and a Tree 思路: dfs动态维护关于深度树状数组 返回时将当前节点的所有操作删除就能保证每次访问这个节点时只进行过根节点到当前节点这条路径上的操作 代码: #pragm ...

  9. BZOJ3159决战——树链剖分+非旋转treap(平衡树动态维护dfs序)

    题目描述 输入 第一行有三个整数N.M和R,分别表示树的节点数.指令和询问总数,以及X国的据点. 接下来N-1行,每行两个整数X和Y,表示Katharon国的一条道路. 接下来M行,每行描述一个指令或 ...

随机推荐

  1. opencv学习之路(25)、轮廓查找与绘制(四)——正外接矩形

    一.简介 二.外接矩形的查找绘制 #include "opencv2/opencv.hpp" using namespace cv; void main() { //外接矩形的查找 ...

  2. topcoder srm 595 div1

    problem1 link 判断最后剩下哪些区间没有被其他区间覆盖. problem2 link 假设$b$的位置固定,那么不同的$a$会使得$[a,b]$有两种情况,第一种,$[a,b]$ is n ...

  3. oracle 老用户数据导入新建用户

    $sqlplus/nolog       #使用PLSQL进入oracleSQL>conn/as sysdba #进入sysdba权限CREATE DIRECTORY datadir1 AS ' ...

  4. adb shell 命令之----pm

    常用的用法: 查看已经安装的包: pm list packages 查看已经安装的包以及apk路径(-3:只看第三方应用: -s:只看系统应用) -f: see their associated fi ...

  5. 马上AI全球挑战者大赛-违约用户风险预测

    方案概述 近年来,互联网金融已经是当今社会上的一个金融发展趋势.在金融领域,无论是投资理财还是借贷放款,风险控制永远是业务的核心基础.对于消费金融来说,其主要服务对象的特点是:额度小.人群大.周期短, ...

  6. 容器工厂(原型&单例)

    上一篇讲的是容器工厂的原型. 我们可以不必通过new关键之创建实例,可以直接取容器里面的实例. 我们可以发现,在对比他们的地址值的时候,他们是相同的为true. 如果我们需要的是不一样的呢.也就是有一 ...

  7. 北京动点飞扬软件招募【Android全职工程师】

    要求: 1 至少半年2年以上android开发经验,能力第一,学历不限 2 至少5个以上正规app开发经验 3 项目周期12个月左右,要求一周内到岗 4 有意向者简历请发邮箱372900288@qq. ...

  8. 【NET Core】事务TransactionScope

    .NET FrameWork时期: TransactionScope是FCL System.Transactions命名空间下的分布式事务组件,它默认为本地事务,当系统有需要时可以自动提升为分布式事务 ...

  9. DAY8 文件操作(二)

    一.写 1.1写文件 # w:没有文件新建文件,有文件就清空文件 w = open('1.txt', 'w', encoding='utf-8') w.write('000\n') # 在写入大量数据 ...

  10. Eclipse的Outline功能栏调出来

    window-->Shoe View -->Outline 按住鼠标左键拖一下Outline功能栏,就可以无论开哪个项目都能够在右边显示Outline功能栏 转载地址:https://bl ...