【CodeForces 624D/623B】Array GCD
You are given array ai of length n. You may consecutively apply two operations to this array:
- remove some subsegment (continuous subsequence) of length m < n and pay for it m·a coins;
- change some elements of the array by at most 1, and pay b coins for each change.
Please note that each of operations may be applied at most once (and may be not applied at all) so you can remove only one segment and each number may be changed (increased or decreased) by at most 1. Also note, that you are not allowed to delete the whole array.
Your goal is to calculate the minimum number of coins that you need to spend in order to make the greatest common divisor of the elements of the resulting array be greater than 1.
The first line of the input contains integers n, a and b (1 ≤ n ≤ 1 000 000, 0 ≤ a, b ≤ 109) — the length of the array, the cost of removing a single element in the first operation and the cost of changing an element, respectively.
The second line contains n integers ai (2 ≤ ai ≤ 109) — elements of the array.
Print a single number — the minimum cost of changes needed to obtain an array, such that the greatest common divisor of all its elements is greater than 1.
3 1 4
4 2 3
1
5 3 2
5 17 13 5 6
8
8 3 4
3 7 5 4 3 12 9 4
13
In the first sample the optimal way is to remove number 3 and pay 1 coin for it.
In the second sample you need to remove a segment [17, 13] and then decrease number 6. The cost of these changes is equal to 2·3 + 2 = 8 coins.
题意
给你n个数,可以执行两种操作最多各一次,一是移除一个连续的序列不可移动整个数列,代价是序列长度*a,二是选一些数改变1,即可以有的加一,有的减一,代价是数字个数*b
最终使得剩下所有数字的最大公约数大于1,求最少代价
分析
因为不能移除所有的数,所以a[1]和a[n]至少会有一个留下来,所以要在a[1]-1、a[1]、a[1]+1、a[n]-1、a[n]、a[n]+1六个数的所有质因数里找最大公约数。
找出t的所有质因子是j从2到根号t,如果t能整除j,j就是一个质因数,存起来,然后t一直除以j,除到不能整除为止,最后判断一下剩下的数如果大于1,那应该就是它本身了,那说明他就是一个素数,也要存起来。存的时候要注意不要重复。这样才不会超时,如果做素数表然后一个个素数去判断是不是它的因数就会超时。
找好后,对每个质因数,进行尺扫(或者叫尺取,还有种方法是DP(待补充)),左边扫到右边,预处理一下前i个数里有几个需要改变(bnum[i]),有几个必须移除的(anum[i])。
扫的时候,移除L到R这段区间的代价为aCost,不移除的代价为bCost,当bCost<=aCost时说明不用移除更划算,于是L更新为R+1,并且存下修改前面的数需要的代价oldbCost,否则计算一下只移除这段区间,其他区间通过修改达到目标,需要多少代价(oldbCost + aCost + ( bnum[n] - bnum[R] ) * b),然后更新答案。算代价的时候如果一个数必须移除,那修改的代价设为无穷。
代码
#include<stdio.h>
#include<algorithm>
#define ll long long
#define N 1000005
using namespace std;
ll n,a,b,m[N],p[N],bnum[N],anum[N],primeFactorNum,minc=1e18; void savePrime(ll a)
{
int noSaved=;
for(int i=; i<primeFactorNum && noSaved; i++)
if(a==p[i])
noSaved=;
if(noSaved)
p[primeFactorNum++]=a;
} void FindPrimeFactor(ll a)
{
for(int i=-; i<=; i++)
{
int j,t=a+i;
for(j=; j*j<=t; j++)
{
if(t%j==)
{
savePrime(j);
while(t%j==)t/=j;
}
}
if(t>)
savePrime(t);
}
} ll cost(ll num,ll factor)
{
if(num%factor==)
return ;
if( (num+) % factor && (num-) % factor )
return 1e17;//+1或-1都不能整除factor
return b;
} void solve(ll factor)
{
ll L=,R,bCost=,aCost=,oldbCost=; while( cost(m[L],factor) == && L <= n) L++;//左边过滤掉不需要改动的连续序列
if(L == n+)
{
minc=;
return;
}
R = L-; bnum[] = anum[] = ; for(int i=; i<=n; i++)
{
ll tmp=cost(m[i],factor); if(tmp == b)
bnum[i] = bnum[i-]+;
else
bnum[i] = bnum[i-]; if(tmp == 1e17)
anum[i] = anum[i-]+;
else
anum[i] = anum[i-];
} if(anum[n] == )
minc = min( minc, bnum[n] * b ); while(R<n)
{
aCost+=a;
R++;
if(bCost<1e17)
bCost+=cost(m[R],factor);
if(bCost<=aCost)
{
L=R+;
oldbCost+=bCost;
bCost=aCost=;
}
else
{
if(anum[n]-anum[R]==)
minc = min( minc , oldbCost + aCost + ( bnum[n] - bnum[R] ) * b );
}
}
}
int main()
{
scanf("%I64d%I64d%I64d",&n,&a,&b);
for(int i=; i<=n; i++)
scanf("%I64d",&m[i]); FindPrimeFactor(m[]);
FindPrimeFactor(m[n]); for(int i=; i<primeFactorNum && minc; i++)
solve(p[i]); printf("%I64d",minc);
return ;
}
2017/8/14,偶然看到自己这篇超长题解和代码,这题没那么烦吧。。因为六个月前的训练赛又挂了这题,然后重写的代码:
当时写得变量名真色。。我快看不懂了。。no代表一个都没删除的最小代价,be表示删除了第i个的最小代价,t就是删除了第i-1个的最小代价,ov就是有删除过但第i-1个未必删除了的最小代价。算是dp的思路。
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <iostream>
#define ll long long
#define N 1000005
#define inf (1LL<<60)
using namespace std;
int n,c[N],d[],pr[N],cnt;
ll a,b;
int main() {
scanf("%d%lld%lld",&n,&a,&b);
for(int i=;i<=n;i++)
scanf("%d",&c[i]);
d[]=c[]-,d[]=c[]+;
d[]=c[n]-,d[]=c[n]+;
d[]=c[];d[]=c[n];
for(int i=;i<;i++){
for(int j=;j*j<=d[i];j++)
if(d[i]%j==){
pr[cnt++]=j;
while(d[i]%j==)
d[i]/=j;
}
if(d[i]>)pr[cnt++]=d[i];
}
sort(pr,pr+cnt);
int m=;
pr[m++]=pr[];
for(int i=;i<cnt;i++)if(pr[i]!=pr[i-])pr[m++]=pr[i];
ll ans=inf;
for(int i=;i<m;i++){
ll no=,be=,ov=;
for(int j=;j<=n;j++){
ll t=be;
be=min(no+a,be+a);
if(c[j]%pr[i]){
if((c[j]+)%pr[i]==||(c[j]-)%pr[i]==)
{
no+=b;
ov=min(min(ov+b,t+b),t+a);
}else{
no=inf;
ov=t+a;
}
}else{
ov=min(t,ov);
}
}
ans=min(ans,min(min(no,be),ov));
}
printf("%lld\n",ans);
return ;
}
【CodeForces 624D/623B】Array GCD的更多相关文章
- 【CodeForces 803 C】Maximal GCD(GCD+思维)
You are given positive integer number n. You should create such strictly increasingsequence of k pos ...
- 【Codeforces Rockethon 2014】Solutions
转载请注明出处:http://www.cnblogs.com/Delostik/p/3553114.html 目前已有[A B C D E] 例行吐槽:趴桌子上睡着了 [A. Genetic Engi ...
- 【CodeForces 624D】Array GCD
题 You are given array ai of length n. You may consecutively apply two operations to this array: remo ...
- 【57.97%】【codeforces Round #380A】Interview with Oleg
time limit per test1 second memory limit per test256 megabytes inputstandard input outputstandard ou ...
- 【42.86%】【Codeforces Round #380D】Sea Battle
time limit per test1 second memory limit per test256 megabytes inputstandard input outputstandard ou ...
- 【26.83%】【Codeforces Round #380C】Road to Cinema
time limit per test1 second memory limit per test256 megabytes inputstandard input outputstandard ou ...
- 【17.76%】【codeforces round 382C】Tennis Championship
time limit per test2 seconds memory limit per test256 megabytes inputstandard input outputstandard o ...
- 【21.21%】【codeforces round 382D】Taxes
time limit per test2 seconds memory limit per test256 megabytes inputstandard input outputstandard o ...
- 【50.88%】【Codeforces round 382B】Urbanization
time limit per test2 seconds memory limit per test256 megabytes inputstandard input outputstandard o ...
随机推荐
- ES6-课程介绍
ES6 可以提高开发效率,把ES3比做斧头,ES5比做锯子,那么ES6就是电锯. ES6新特性 默认参数.字符串模板.结构赋值.箭头函数.set\mat .异步操作.类和对象 .模块化
- ORA-00020:maximum number of processes (150) exceeded
异常的含义 超过最大的进程数 我们使用下面的语句可以查看与进程(process)的相关参数: 如上所示,这里的最大进程数是150. 问题可能存在的原因 1.应用程序在使用数据库连接池时,使用完成后没有 ...
- [Spark][Python]Spark 访问 mysql , 生成 dataframe 的例子:
[Spark][Python]Spark 访问 mysql , 生成 dataframe 的例子: mydf001=sqlContext.read.format("jdbc").o ...
- 基于Asp.Net Core Mvc和EntityFramework Core 的实战入门教程系列-5
来个目录吧: 第一章-入门 第二章- Entity Framework Core Nuget包管理 第三章-创建.修改.删除.查询 第四章-排序.过滤.分页.分组 第五章-迁移,EF Core 的co ...
- 类似于PLC上升沿的TRIO代码示例
需求: 一个自复位按钮,控制灯泡的亮与灭(按钮按一次灯亮,再按一次灯灭依次循环). 简短的代码,若大家有更好的思路可以评论区留言. DIM in_button,op_lamp,var_middl ...
- Gerrit日常维护记录
Gerrit代码审核工具是个好东西,尤其是在和Gitlab和Jenkins对接后,在代码控制方面有着无与伦比的优势. 在公司线上部署了一套Gerrit系统,在日常运维中,使用了很多gerrit命令,在 ...
- 项目开发之package.json
Name 必须字段. 提示: 不要在name中包含js, node字样: 这个名字不能以点号或下划线开头: 这个名字不能包含有大写字母: 这个名字可能在require()方法中被调用,所以应该尽可能短 ...
- 第二次作业 --- 我对QQ的评测
腾讯QQ(简称“QQ”)是腾讯公司开发的一款基于Internet的即时通信(IM)软件.腾讯QQ支持在线聊天.视频通话.点对点断点续传文件.共享文件.网络硬盘.自定义面板.QQ邮箱等多种功能,并可与多 ...
- M2团队贡献分分配
经过考虑,M2阶段团队贡献分分配如下: 团队成员 贡献分 12061166 宋天舒 56 12061157 黄漠源 52 12061159 张迎春 55 12061175 刘翔宇 54 1206117 ...
- Alpha冲刺之事后诸葛亮
组长博客 作业博客 项目Postmortem 设想和目标 我们的软件要解决什么问题?是否定义得很清楚?是否对典型用户和典型场景有清晰的描述? 我们的软件针对的是福大学子来到食堂会犹豫不决无法决定吃什么 ...