nowcoder172A 中位数 (二分答案)
二分一下答案,假设是x。
我们把大于x的看成1,小于x的看成-1,等于x的看成0
那某个区间的和如果是正的,就说明这个区间中位数大于x;如果是0,就等于x;如果是负的,就小于x;
这样的话,做一个前缀和,然后维护一下满足长度>=len的最小值,然后减一减,看看是不是>=0就可以了。
(我自己写的话我自己都看不懂...)
#include<bits/stdc++.h>
#define pa pair<int,int>
#define ll long long
using namespace std;
const int maxn=; ll rd(){
ll x=;char c=getchar();int neg=;
while(c<''||c>''){if(c=='-') neg=-;c=getchar();}
while(c>=''&&c<='') x=x*+c-'',c=getchar();
return x*neg;
} int N,num[maxn],val[maxn],mlen;
int sum[maxn]; inline bool judge(int x){
for(int i=;i<=N;i++) sum[i]=sum[i-]+(num[i]<x?-:num[i]>x);
int mi=0x3f3f3f3f;bool b=;
for(int i=mlen+;i<=N;i++){
mi=min(mi,sum[i-mlen]);
b|=(sum[i]>=mi);
}return b;
} int main(){
int i,j,k;
N=rd(),mlen=rd();
for(i=;i<=N;i++) val[i]=num[i]=rd();
sort(val+,val+N+);
int l=,r=N;
while(l<=r){
int m=l+r>>;
if(judge(val[m])) l=m+;
else r=m-;
}printf("%d\n",val[l-]);
return ;
}
nowcoder172A 中位数 (二分答案)的更多相关文章
- Leetcode 4. Median of Two Sorted Arrays(中位数+二分答案+递归)
4. Median of Two Sorted Arrays Hard There are two sorted arrays nums1 and nums2 of size m and n resp ...
- POJ 3579 Median(二分答案+Two pointers)
[题目链接] http://poj.org/problem?id=3579 [题目大意] 给出一个数列,求两两差值绝对值的中位数. [题解] 因为如果直接计算中位数的话,数量过于庞大,难以有效计算, ...
- BZOJ_2600_[Ioi2011]ricehub_二分答案
BZOJ_2600_[Ioi2011]ricehub_二分答案 Description 乡间有一条笔直而长的路称为“米道”.沿着这条米道上 R 块稻田,每块稻田的坐标均 为一个 1 到 L 之间(含 ...
- AtCoder Regular Contest 101 (ARC101) D - Median of Medians 二分答案 树状数组
原文链接https://www.cnblogs.com/zhouzhendong/p/ARC101D.html 题目传送门 - ARC101D 题意 给定一个序列 A . 定义一个序列 A 的中位数为 ...
- POJ 3579 Median 【二分答案】
<题目链接> 题目大意: 给出 N个数,对于存有每两个数的差值的序列求中位数,如果这个序列长度为偶数个元素,就取中间偏小的作为中位数. 解题分析: 由于本题n达到了1e5,所以将这些数之间 ...
- BZOJ2653middle——二分答案+可持久化线段树
题目描述 一个长度为n的序列a,设其排过序之后为b,其中位数定义为b[n/2],其中a,b从0开始标号,除法取下整.给你一个 长度为n的序列s.回答Q个这样的询问:s的左端点在[a,b]之间,右端点在 ...
- 【bzoj2653】【middle】【主席树+二分答案】
Description 一个长度为 n 的序列 a ,设其排过序之后为 b ,其中位数定义为 b[n/2] ,其中 a,b 从 0 开始标号 , 除法取下整. 给你一个长度为 n 的序列 s .回答 ...
- BZOJ2653 middle(二分答案+主席树)
与中位数有关的题二分答案是很常用的trick.二分答案之后,将所有大于它的看成1小于它的看成-1,那么只需要判断是否存在满足要求的一段和不小于0. 由于每个位置是1还是-1并不固定,似乎不是很好算.考 ...
- bzoj 2653 二分答案+可持久化线段树
首先离散化,然后我们知道如果对于一个询问的区间[l1,r1],[l2,r2],我们二分到一个答案x,将[l1,r2]区间中的元素大于等于x的设为1,其余的设为-1,那么如果[l1,r1]的最大右区间和 ...
随机推荐
- 图像数据增强 (Data Augmentation in Computer Vision)
1.1 简介 深层神经网络一般都需要大量的训练数据才能获得比较理想的结果.在数据量有限的情况下,可以通过数据增强(Data Augmentation)来增加训练样本的多样性, 提高模型鲁棒性,避免过拟 ...
- ubuntu16.04在GTX1070环境下安装 cuda9.1
设备要求 系统:Ubuntu16.04 显卡:GTX 1070 驱动:nvidia系列,显卡驱动的版本必须大于等于cuda的sh文件名里面的版本号 驱动可从 此处 下载,我已经整理好了 检查安装驱动 ...
- iptables限制连接数(如sftp) 以及 谨防CC/DDOS攻击的配置 ( connlimit模块)
之前在公司服务器上部署了sftp,用于上传业务系统的附件.后来由于程序连接问题,使的sftp连接数过多(最多时高达400多个sftp连接数),因为急需要对sftp的连接数做严格限制.操作记录如下: 启 ...
- 浅谈JS的作用域链(三)
前面两篇文章介绍了JavaScript执行上下文中两个重要属性:VO/AO和scope chain.本文就来看看执行上下文中的this. 首先看看下面两个对this的概括: this是执行上下文(Ex ...
- 浅谈JS的作用域链(一)
JS的执行环境 执行环境(Execution context,EC)或执行上下文,是JS中一个极为重要的概念. 在JavaScript中有三种代码运行环境: Global Code JavaScrip ...
- 修改sga_max_size大小后重启数据库报 ORA-00851
http://blog.itpub.net/30150152/viewspace-1449898/
- Visual Studio2013的安装过程及练习测试
一.安装环境: 支持安装的操作系统版本:Windows XP,Windows7,Windows8,Windows10. CPU大小:Intel(R)Core(TM)i5-4210U CPU @1.7G ...
- 《Linux内核设计与实现》第十八章读书笔记
1.内核中的bug 内核中的bug表现得不像用户级程序中那么清晰——因为内核.用户以及硬件之间的交互会很微妙: 从隐藏在源代码中的错误到展现在目击者面前的bug,往往是经历一系列连锁反应的事件才可能触 ...
- 《Linux内核分析》 期中总结
Linux内核分析 期中总结 20135307 张嘉琪 一.Linux内核分析课程总结 学习笔记汇总 第一节 计算机是如何工作的 第二节 操作系统是如何工作的 第三节 构造一个简单的Linux系统Me ...
- 使用Spring提供的缓存抽象机制整合EHCache为项目提供二级缓存
Spring自身并没有实现缓存解决方案,但是对缓存管理功能提供了声明式的支持,能够与多种流行的缓存实现进行集成. Spring Cache是作用在方法上的(不能理解为只注解在方法上),其核心思想是 ...