BZOJ5306 HAOI2018染色(容斥原理+NTT)
容易想到枚举恰好出现S次的颜色有几种。如果固定至少有i种恰好出现S次,那么方案数是C(M,i)·C(N,i*S)·(M-i)N-i*S·(i*S)!/(S!)i,设为f(i)。
于是考虑容斥,可得恰好i种的答案为Σ(-1)j-iC(j,i)·f(j) (j=i~min(M,⌊N/S⌋))。因为容斥是一个枚举子集的过程,在算至少i种的方案时,f(j)被计入了C(j,i)次。
f显然可以通过预处理阶乘及其逆元线性地算出来。考虑怎么快速算后一部分。注意到模数,NTT没跑了。拆开组合数,可以发现是与j-i有关的式子和与j有关的式子相乘,那么把其中一个翻转一下就是卷积了。
容斥好难啊。
#include<iostream>
#include<cstdio>
#include<cmath>
#include<cstdlib>
#include<cstring>
#include<algorithm>
using namespace std;
int read()
{
int x=,f=;char c=getchar();
while (c<''||c>'') {if (c=='-') f=-;c=getchar();}
while (c>=''&&c<='') x=(x<<)+(x<<)+(c^),c=getchar();
return x*f;
}
#define P 1004535809
#define N 10000010
#define M 100010
#define inv3 334845270
int n,m,s,k,t,w[N],f[M*],a[M*],fac[N],inv[N],r[M*],ans=;
int ksm(int a,int k)
{
if (k==) return ;
int tmp=ksm(a,k>>);
if (k&) return 1ll*tmp*tmp%P*a%P;
else return 1ll*tmp*tmp%P;
}
int C(int n,int m){return 1ll*fac[n]*inv[m]%P*inv[n-m]%P;}
void DFT(int n,int *a,int p)
{
for (int i=;i<n;i++) if (i<r[i]) swap(a[i],a[r[i]]);
for (int i=;i<=n;i<<=)
{
int wn=ksm(p,(P-)/i);
for (int j=;j<n;j+=i)
{
int w=;
for (int k=j;k<j+(i>>);k++,w=1ll*w*wn%P)
{
int x=a[k],y=1ll*w*a[k+(i>>)]%P;
a[k]=(x+y)%P,a[k+(i>>)]=(x-y+P)%P;
}
}
}
}
void mul(int n,int *a,int *b)
{
DFT(n,a,),DFT(n,b,);
for (int i=;i<n;i++) a[i]=1ll*a[i]*b[i]%P;
DFT(n,a,inv3);
int inv=ksm(n,P-);
for (int i=;i<n;i++) a[i]=1ll*a[i]*inv%P;
}
int main()
{
#ifndef ONLINE_JUDGE
freopen("bzoj5306.in","r",stdin);
freopen("bzoj5306.out","w",stdout);
const char LL[]="%I64d";
#else
const char LL[]="%lld";
#endif
n=read(),m=read(),s=read(),k=min(m,n/s);
for (int i=;i<=m;i++) w[i]=read();
fac[]=;for (int i=;i<=max(n,m);i++) fac[i]=1ll*fac[i-]*i%P;
inv[]=inv[]=;for (int i=;i<=max(n,m);i++) inv[i]=(P-1ll*(P/i)*inv[P%i]%P)%P;
for (int i=;i<=max(n,m);i++) inv[i]=1ll*inv[i]*inv[i-]%P;
for (int i=;i<=k;i++)
f[i]=1ll*C(m,i)*C(n,i*s)%P*ksm(m-i,n-i*s)%P*fac[i*s]%P*ksm(inv[s],i)%P;
t=;while (t<=k*) t<<=;
for (int i=;i<t;i++) r[i]=(r[i>>]>>)|(i&)*(t>>);
for (int i=;i<=k;i++) f[i]=1ll*f[i]*fac[i]%P;
for (int i=;i<=k;i++) a[i]=1ll*((i&)?P-:)*inv[i]%P;
reverse(a,a+k+);
mul(t,f,a);
for (int i=;i<=k;i++) ans=(ans+1ll*f[i+k]*w[i]%P*inv[i]%P)%P;
cout<<ans;
return ;
}
BZOJ5306 HAOI2018染色(容斥原理+NTT)的更多相关文章
- [BZOJ5306] [HAOI2018]染色(容斥原理+NTT)
[BZOJ5306] [HAOI2018]染色(容斥原理+NTT) 题面 一个长度为 n的序列, 每个位置都可以被染成 m种颜色中的某一种. 如果n个位置中恰好出现了 S次的颜色有 K种, 则小 C ...
- 【BZOJ5306】[HAOI2018]染色(NTT)
[BZOJ5306]染色(NTT) 题面 BZOJ 洛谷 题解 我们只需要考虑每一个\(W[i]\)的贡献就好了 令\(lim=min(M,\frac{N}{S})\) 那么,开始考虑每一个\(W[i ...
- [HAOI2018][bzoj5306] 染色 [容斥原理+NTT]
题面 传送门 思路 这道题的核心在于"恰好有$k$种颜色占了恰好$s$个格子" 这些"恰好",引导我们去思考,怎么求出总的方案数呢? 分开考虑 考虑把恰好有$s ...
- BZOJ5306 [HAOI2018]染色 【组合数 + 容斥 + NTT】
题目 为了报答小 C 的苹果, 小 G 打算送给热爱美术的小 C 一块画布, 这块画布可 以抽象为一个长度为 \(N\) 的序列, 每个位置都可以被染成 \(M\) 种颜色中的某一种. 然而小 C 只 ...
- [BZOJ5306][HAOI2018]染色
bzoj luogu Description 给一个长度为\(n\)的序列染色,每个位置上可以染\(m\)种颜色.如果染色后出现了\(S\)次的颜色有\(k\)种,那么这次染色就可以获得\(w_k\) ...
- [BZOJ5306][HAOI2018]染色(容斥+FFT)
https://www.cnblogs.com/zhoushuyu/p/9138251.html 注意如果一开始F(i)中内层式子中j枚举的是除前i种颜色之外还有几种出现S次的颜色,那么后面式子就会难 ...
- 【BZOJ5306】 [Haoi2018]染色
BZOJ5306 [Haoi2018]染色 Solution xzz的博客 代码实现 #include<stdio.h> #include<stdlib.h> #include ...
- 【题解】[HAOI2018]染色(NTT+容斥/二项式反演)
[题解][HAOI2018]染色(NTT+容斥/二项式反演) 可以直接写出式子: \[ f(x)={m \choose x}n!{(\dfrac 1 {(Sx)!})}^x(m-x)^{n-Sx}\d ...
- BZOJ 5306 [HAOI2018] 染色
BZOJ 5306 [HAOI2018] 染色 首先,求出$N$个位置,出现次数恰好为$S$的颜色至少有$K$种. 方案数显然为$a_i=\frac{n!\times (m-i)^{m-i\times ...
随机推荐
- java 学习------JDK1.8安装与配置
1.下在JDK 1.8 2.解压安装 (一般选择默认路径安装) 3.配置环境变量 (我的电脑是windows10 系统) (1)计算机→属性→高级系统设置→高级→环境变量 (2)添加 JAVA ...
- JAVA 8的新特性
1.Lambda表达式:允许把函数作为一个方法的参数 Lambda的优点: 1)简洁 2)非常容易并行计算 3)可能代表未来编程趋势 Lambda的缺点: 1)若不要并行计算,很多时候计算速度没有传统 ...
- 液晶屏MIPI接口与LVDS接口区别(总结)
液晶屏接口类型有LVDS接口.MIPI DSIDSI接口(下文只讨论液晶屏LVDS接口,不讨论其它应用的LVDS接口,因此说到LVDS接口时无特殊说明都是指液晶屏LVDS接口),它们的主要信号成分都是 ...
- 历时25天,我的博客(www.ityouknow.com)终于又活了过来
时间回到2016年的7月10号,那时候我刚刚开始正式在博客园写博客,博客园的交流氛围很好,但鉴于博客园古老的界面,同时计划创建一个自己独立的博客,毕竟自己的博客怎么折腾都行. 那时候正在研究 Spri ...
- XenServer虚拟化环境安装记录
Xenserver,思杰基于Xen的虚拟化服务器.Citrix XenServer是一种全面而易于管理的服务器虚拟化平台,基于强大的 Xen Hypervisor 程序之上.XenServer 是为了 ...
- Linux磁盘空间被占用问题 (分区目录占用空间比实际空间要大: 资源文件删除后, 空间没有真正释放)
问题说明:IDC里的一台服务器的/分区使用率爆满了!已达到100%!经查看发现有个文件过大(80G),于是在跟有关同事确认后rm -f果断删除该文件.但是发现删除该文件后,/分区的磁盘空间压根没有释放 ...
- 分布式监控系统Zabbix-3.0.3-完整安装记录(0)
一.Linux下开源监控系统简单介绍1)cacti:存储数据能力强,报警性能差2)nagios:报警性能差,存储数据仅有简单的一段可以判断是否在合理范围内的数据长度,储存在内存中.比如,连续采样数据存 ...
- 四则运算coding
https://coding.net/u/ztf1641429293/p/sizeyunshuan/git/blob/master/Sizenyunsuan.java
- sql server选取第m行到第n行的元组
现在有一个表Questioin,主码是qid,要求选择第m行到第n行的元组 //方法一:效率最低 //错误:如果n<m,将选取前n条数据,如果n>=m,将选取从m+1开始的n条数据 sel ...
- 《Linux内核分析》第七周笔记 可执行程序的装载
20135132陈雨鑫 + 原创作品转载请注明出处 + <Linux内核分析>MOOC课程http://mooc.study.163.com/course/USTC-1000029000 ...