题目描述

Byteasar has designed a supercomputer of novel architecture. It may comprise of many (identical) processing units. Each processing unit can execute a single instruction per time unit.
The programs for this computer are not sequential but rather have a tree structure. Each instruction may have zero, one, or multiple subsequent instructions, for which it is the parent instruction.
The instructions of the program can be executed in parallel on all available processing units. Moreover, they can be executed in many orders: the only restriction is that an instruction cannot be executed unless its parent instruction has been executed before. For example, as many subsequent instructions of an instruction that has been executed already can be executed in parallel as there are processing units.
Byteasar has a certain program to run. Since he likes utilizing his resources optimally, he is wondering how the number of processing units would affect the running time. He asks you to determine, for a given program and number of processing units, the minimum execution time of the program on a supercomputer with this many processing units.
给定一棵N个节点的有根树,根节点为1。
Q次询问,每次给定一个K,用最少的操作次数遍历完整棵树,输出最少操作次数。
每次操作可以选择访问不超过K个未访问的点,且这些点的父亲必须在之前被访问过。

输入

In the first line of standard input, there are two integers, N and Q (1<=N,Q<=1 000 000), separated by a single space, that specify the number of instructions in Byteasar's program and the number of running time queries (for different numbers of processing units).
In the second line of input, there is a sequence of Q integers, K1,k2,…Kq (1<=Ki<=1 000 000), separated by single spaces: Ki is the number of processing units in Byteasar's i-th query.
In the third and last input line, there is a sequence of N-1 integers, A2,A2…An (1<=Ai<i), separated by single spaces: Ai specifies the number of the parent instruction of the instruction number i. The instructions are numbered with successive integers from 1 to N, where the instruction no. 1 is the first instruction of the program.

输出

Your program should print one line consisting of Q integers, separated by single spaces, to the standard output: the i-th of these numbers should specify the minimum execution time of the program on a supercomputer with Ki processing units.

样例输入

20 1
3
1 1 1 3 4 3 2 8 6 9 10 12 12 13 14 11 11 11 11

样例输出

8

提示

1
2
3
4
5
6
7
8
1    
2 3 4
5 6 7
8 10  
9 12  
11 13 14
15 16 17
18 19 20
 
最优情况一定是每次选满k个,但这显然不能实现,因此最优策略就是每次尽可能多的选点且保证下一次也能尽可能多的选点。
那么对于每一次选点,能选子节点就选子节点,而不是选完这一层再选下一层,因为只要不到最底层,选子节点至少不会使下一次能选的点数变小。
当往下选不了了再回来选之前剩下的,这样的话前面一些层每层要选一次,后面的层要用size/k次。
能够证明出来合法的最优解是ans=max{i+i/k},其中i代表深度。
这样求每次询问都是O(n)的显然不行。但可以发现有些i永远不可能成为答案或者如果当前k时不能作为答案之后的k就一定不会成为答案。
因此可以斜率优化成O(n)。只处理出1<=k<=n的k的答案,剩下k>n的答案就是最大深度
#include<set>
#include<map>
#include<queue>
#include<stack>
#include<cmath>
#include<bitset>
#include<vector>
#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
#define ll long long
using namespace std;
int head[1000010];
int n,Q,x;
int tot;
int k[1000010];
int to[1000010];
int next[1000010];
int dep;
int sum[1000010];
int c[1000010];
int q[1000010];
int ans[1000010];
int l=1,r;
void add(int x,int y)
{
tot++;
next[tot]=head[x];
head[x]=tot;
to[tot]=y;
}
void dfs(int x,int d)
{
dep=max(dep,d);
c[d]++;
for(int i=head[x];i;i=next[i])
{
dfs(to[i],d+1);
}
}
int calc(int x,int y)
{
return x/y+(x%y>0);
}
int main()
{
scanf("%d%d",&n,&Q);
for(int i=1;i<=Q;i++)
{
scanf("%d",&k[i]);
}
for(int i=2;i<=n;i++)
{
scanf("%d",&x);
add(x,i);
}
dfs(1,1);
for(int i=dep;i>=0;i--)
{
sum[i]=sum[i+1]+c[i+1];
}
for(int i=dep;i>=0;q[++r]=i--)
{
while(l<r&&1ll*(q[r-1]-q[r])*(sum[i]-sum[q[r]])>=1ll*(q[r]-i)*(sum[q[r]]-sum[q[r-1]]))
{
r--;
}
}
for(int i=n;i>=1;i--)
{
while(l<r&&1ll*i*(q[l]-q[l+1])<=1ll*(sum[q[l+1]]-sum[q[l]]))
{
l++;
}
ans[i]=q[l]+calc(sum[q[l]],i);
}
for(int i=1;i<=Q;i++)
{
k[i]>n?printf("%d",dep):printf("%d",ans[k[i]]);
if(i!=Q)
{
printf(" ");
}
}
}

BZOJ3835[Poi2014]Supercomputer——斜率优化的更多相关文章

  1. BZOJ3835 [Poi2014]Supercomputer 【斜率优化】

    题目链接 BZOJ3835 题解 对于\(k\),设\(s[i]\)为深度大于\(i\)的点数 \[ans = max\{i + \lceil \frac{s[i]}{k}\} \rceil\] 最优 ...

  2. BZOJ3835: [Poi2014]Supercomputer

    Description Byteasar has designed a supercomputer of novel architecture. It may comprise of many (id ...

  3. 洛谷3571 POI2014 SUP-Supercomputer (斜率优化)

    一道神仙好题. 首先看到有多组\(k\),第一反应就是离线. 考虑贪心. 我们每次一定是尽量选择有儿子的节点.以便于我们下一次扩展. 但是对于一个\(k\),每次贪心的复杂度是\(O(n)\) 总复杂 ...

  4. DP的各种优化(动态规划,决策单调性,斜率优化,带权二分,单调栈,单调队列)

    前缀和优化 当DP过程中需要反复从一个求和式转移的话,可以先把它预处理一下.运算一般都要满足可减性. 比较naive就不展开了. 题目 [Todo]洛谷P2513 [HAOI2009]逆序对数列 [D ...

  5. BZOJ 1597: [Usaco2008 Mar]土地购买 [斜率优化DP]

    1597: [Usaco2008 Mar]土地购买 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 4026  Solved: 1473[Submit] ...

  6. [斜率优化DP]【学习笔记】【更新中】

    参考资料: 1.元旦集训的课件已经很好了 http://files.cnblogs.com/files/candy99/dp.pdf 2.http://www.cnblogs.com/MashiroS ...

  7. BZOJ 1010: [HNOI2008]玩具装箱toy [DP 斜率优化]

    1010: [HNOI2008]玩具装箱toy Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 9812  Solved: 3978[Submit][St ...

  8. 单调队列 && 斜率优化dp 专题

    首先得讲一下单调队列,顾名思义,单调队列就是队列中的每个元素具有单调性,如果是单调递增队列,那么每个元素都是单调递增的,反正,亦然. 那么如何对单调队列进行操作呢? 是这样的:对于单调队列而言,队首和 ...

  9. 【BZOJ2442】 [Usaco2011 Open]修剪草坪 斜率优化DP

    第一次斜率优化. 大致有两种思路: 1.f[i]表示第i个不选的最优情况(最小损失和)f[i]=f[j]+e[i] 显然n^2会T,但是可以发现f的移动情况可以用之前单调队列优化,就优化成O(n)的了 ...

随机推荐

  1. QT写TXT文件

    #include <QDir> //头文件 QDir *TEST = new QDir;    bool exist = TEST->exists("TEST") ...

  2. LeetCode263:Ugly Number

    public bool IsUgly(int num) { if(num<1) return false; while(num>1) { if(num%2==0) { num=num/2; ...

  3. C#实现一张塔松叶

    前段时间,Insus.NET有实现一组字符串在输出时,靠左或靠右对齐.<输出的字符靠右对齐>http://www.cnblogs.com/insus/p/7953304.html 现在In ...

  4. 用c#开发微信 系列汇总 - z

    http://www.cnblogs.com/txw1958/ http://www.cnblogs.com/fengwenit/p/4505062.html

  5. Log4j2使用笔记

                 log4j2是log4j的最新版,现在已经有很多公司在使用了.log4j2和log4j的优缺点对比,请自行百度. 上一篇笔记讲了关于log4j的使用.这篇笔记主要讲解log4 ...

  6. 通过容器提交镜像(docker commit)以及推送镜像(docker push)笔记

    在本地创建一个容器后,可以依据这个容器创建本地镜像,并可把这个镜像推送到Docker hub中,以便在网络上下载使用. 查看镜像 [root@docker-test1 ~]# docker image ...

  7. Dubbo原理和源码解析之“微内核+插件”机制

    github新增仓库 "dubbo-read"(点此查看),集合所有<Dubbo原理和源码解析>系列文章,后续将继续补充该系列,同时将针对Dubbo所做的功能扩展也进行 ...

  8. Beta版测试报告

    Beta版测试报告 测试中发现的Bug: Version 2.0 Bug List 1. 在动态监测界面,若随便点击“开始”.“关闭”.“结束”.红叉,会出现不定式崩溃现象. 2. 处理空数据时可能会 ...

  9. Daily Scrumming* 2015.12.20(Day 12)

    一.团队scrum meeting照片 二.成员工作总结 姓名 任务ID 迁入记录 江昊 任务1090 https://github.com/buaaclubs-team/temp-front/com ...

  10. js异步回调

    简单理解:js是单线程的,Ajax请求远程数据.IO等会很耗时,引起堵塞可能会引起反应时间太长页面失去反应. 回调:A函数作为一个参数传给B函数,执行完B后再执行A: 同步回调: function A ...