BZOJ3835[Poi2014]Supercomputer——斜率优化
题目描述
输入
输出
样例输入
3
1 1 1 3 4 3 2 8 6 9 10 12 12 13 14 11 11 11 11
样例输出
提示
#include<set>
#include<map>
#include<queue>
#include<stack>
#include<cmath>
#include<bitset>
#include<vector>
#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
#define ll long long
using namespace std;
int head[1000010];
int n,Q,x;
int tot;
int k[1000010];
int to[1000010];
int next[1000010];
int dep;
int sum[1000010];
int c[1000010];
int q[1000010];
int ans[1000010];
int l=1,r;
void add(int x,int y)
{
tot++;
next[tot]=head[x];
head[x]=tot;
to[tot]=y;
}
void dfs(int x,int d)
{
dep=max(dep,d);
c[d]++;
for(int i=head[x];i;i=next[i])
{
dfs(to[i],d+1);
}
}
int calc(int x,int y)
{
return x/y+(x%y>0);
}
int main()
{
scanf("%d%d",&n,&Q);
for(int i=1;i<=Q;i++)
{
scanf("%d",&k[i]);
}
for(int i=2;i<=n;i++)
{
scanf("%d",&x);
add(x,i);
}
dfs(1,1);
for(int i=dep;i>=0;i--)
{
sum[i]=sum[i+1]+c[i+1];
}
for(int i=dep;i>=0;q[++r]=i--)
{
while(l<r&&1ll*(q[r-1]-q[r])*(sum[i]-sum[q[r]])>=1ll*(q[r]-i)*(sum[q[r]]-sum[q[r-1]]))
{
r--;
}
}
for(int i=n;i>=1;i--)
{
while(l<r&&1ll*i*(q[l]-q[l+1])<=1ll*(sum[q[l+1]]-sum[q[l]]))
{
l++;
}
ans[i]=q[l]+calc(sum[q[l]],i);
}
for(int i=1;i<=Q;i++)
{
k[i]>n?printf("%d",dep):printf("%d",ans[k[i]]);
if(i!=Q)
{
printf(" ");
}
}
}
BZOJ3835[Poi2014]Supercomputer——斜率优化的更多相关文章
- BZOJ3835 [Poi2014]Supercomputer 【斜率优化】
题目链接 BZOJ3835 题解 对于\(k\),设\(s[i]\)为深度大于\(i\)的点数 \[ans = max\{i + \lceil \frac{s[i]}{k}\} \rceil\] 最优 ...
- BZOJ3835: [Poi2014]Supercomputer
Description Byteasar has designed a supercomputer of novel architecture. It may comprise of many (id ...
- 洛谷3571 POI2014 SUP-Supercomputer (斜率优化)
一道神仙好题. 首先看到有多组\(k\),第一反应就是离线. 考虑贪心. 我们每次一定是尽量选择有儿子的节点.以便于我们下一次扩展. 但是对于一个\(k\),每次贪心的复杂度是\(O(n)\) 总复杂 ...
- DP的各种优化(动态规划,决策单调性,斜率优化,带权二分,单调栈,单调队列)
前缀和优化 当DP过程中需要反复从一个求和式转移的话,可以先把它预处理一下.运算一般都要满足可减性. 比较naive就不展开了. 题目 [Todo]洛谷P2513 [HAOI2009]逆序对数列 [D ...
- BZOJ 1597: [Usaco2008 Mar]土地购买 [斜率优化DP]
1597: [Usaco2008 Mar]土地购买 Time Limit: 10 Sec Memory Limit: 162 MBSubmit: 4026 Solved: 1473[Submit] ...
- [斜率优化DP]【学习笔记】【更新中】
参考资料: 1.元旦集训的课件已经很好了 http://files.cnblogs.com/files/candy99/dp.pdf 2.http://www.cnblogs.com/MashiroS ...
- BZOJ 1010: [HNOI2008]玩具装箱toy [DP 斜率优化]
1010: [HNOI2008]玩具装箱toy Time Limit: 1 Sec Memory Limit: 162 MBSubmit: 9812 Solved: 3978[Submit][St ...
- 单调队列 && 斜率优化dp 专题
首先得讲一下单调队列,顾名思义,单调队列就是队列中的每个元素具有单调性,如果是单调递增队列,那么每个元素都是单调递增的,反正,亦然. 那么如何对单调队列进行操作呢? 是这样的:对于单调队列而言,队首和 ...
- 【BZOJ2442】 [Usaco2011 Open]修剪草坪 斜率优化DP
第一次斜率优化. 大致有两种思路: 1.f[i]表示第i个不选的最优情况(最小损失和)f[i]=f[j]+e[i] 显然n^2会T,但是可以发现f的移动情况可以用之前单调队列优化,就优化成O(n)的了 ...
随机推荐
- Luogu P2661 [NOIP2015] 信息传递
qwq 今天做完并查集突然想起来这道以前做的好(shui)题, 虽然是黄题,但是是并查集一个比较特别的用法 这道题大概可以用求最小环的方式来做,但是从直觉上果然还是并查集w 乍一看只要求出“父→子”即 ...
- MySQL(一)MySQL基础介绍
最近的学习内容是数据库相关的一些知识,主要以MySQL为主,参考书籍——<MySQL必知必会> MySQL学习及下载地址:https://dev.mysql.com/ MySQL学习使用注 ...
- ueditor保存出现 从客户端(Note="<p>12345</p>")中检测到有潜在危险的 Request.Form 值
检测到有潜在危险的 Request.Form 值 这种问题是因为你提交的Form中有HTML字符串,例如你在TextBox中输入了html标签,或者在页面中使用了HtmlEditor组件等,解决办 ...
- ORA-14551: 无法在查询中执行 DML 操作
编写了一个oracle函数,函数体内实现一系列数据库的逻辑处理,涉及到数据的增删等操作,返回NCLOB类型. 然后通过查询方式调用函数: SELECT PKG.MY_FUN('A') FROM DUA ...
- jquery中的选择器:has和:not的用法
这两个选择器可以帮助我们在选择父级和子孙之间关系的dom更从容~ <div><p><span>Hello</span></p></di ...
- awk 内置函数列表
1.gsub要在整个记录中替换一个字符串为另一个,使用正则表达式格式,/目标模式/,替换模式/.例如改变学生序号4842到4899:$ awk 'gsub('4842/, 4899) {print $ ...
- youtube下载工具
Youtube是一个全球性的视频分享网站,其种类之多,内容之丰富,是大家有目共睹的.特别是原创视频更是多不胜数, 每分钟都有400+小时的youtube视频上传,每天都有30亿+的视频被观看.随着视频 ...
- Python下操作Memcache/Redis/RabbitMQ说明
一.MemcacheMemcache是一套分布式的高速缓存系统,由LiveJournal的Brad Fitzpatrick开发,但目前被许多网站使用以提升网站的访问速度,尤其对于一些大型的.需要频繁访 ...
- 小程序encryptedData
准备知识: Base64编解码 AES算法.填充模式.偏移向量 session_key会话密钥,以及怎么存储和获取 以上3点对于理解解密流程非常重要. 根据官方文档,我梳理了大致的解密流程,如下: 小 ...
- PHP从入门到精通(三)
PHP数组的分类 按照下标的不同,PHP数组分为关联数组与索引数组: 索引数组:下标从0开始,依次增长:关联数组: 下标为字符串格式,每个下标字符串与数组的值一一关联对应.(有点像对象的键值对) 关于 ...