BZOJ4530[Bjoi2014]大融合——LCT维护子树信息
题目描述

输入
输出
样例输入
A 2 3
A 3 4
A 3 8
A 8 7
A 6 5
Q 3 8
样例输出
#include<set>
#include<map>
#include<cmath>
#include<queue>
#include<stack>
#include<vector>
#include<cstdio>
#include<bitset>
#include<cstring>
#include<iostream>
#include<algorithm>
using namespace std;
int n,m;
int x,y;
char ch[3];
int s[100010][2];
int f[100010];
int r[100010];
int st[100010];
int size[100010];
int sum[100010];
int get(int rt)
{
return rt==s[f[rt]][1];
}
void pushup(int rt)
{
sum[rt]=sum[s[rt][0]]+sum[s[rt][1]]+size[rt]+1;
}
void pushdown(int rt)
{
if(r[rt])
{
r[s[rt][0]]^=1;
r[s[rt][1]]^=1;
r[rt]^=1;
swap(s[rt][0],s[rt][1]);
}
}
int is_root(int rt)
{
return rt!=s[f[rt]][0]&&rt!=s[f[rt]][1];
}
void rotate(int rt)
{
int fa=f[rt];
int anc=f[fa];
int k=get(rt);
if(!is_root(fa))
{
s[anc][get(fa)]=rt;
}
s[fa][k]=s[rt][k^1];
f[s[fa][k]]=fa;
s[rt][k^1]=fa;
f[fa]=rt;
f[rt]=anc;
pushup(fa);
pushup(rt);
}
void splay(int rt)
{
int top=0;
st[++top]=rt;
for(int i=rt;!is_root(i);i=f[i])
{
st[++top]=f[i];
}
for(int i=top;i>=1;i--)
{
pushdown(st[i]);
}
for(int fa;!is_root(rt);rotate(rt))
{
if(!is_root(fa=f[rt]))
{
rotate(get(fa)==get(rt)?fa:rt);
}
}
}
void access(int rt)
{
for(int x=0;rt;x=rt,rt=f[rt])
{
splay(rt);
size[rt]+=sum[s[rt][1]]-sum[x];
s[rt][1]=x;
pushup(rt);
}
}
void reverse(int rt)
{
access(rt);
splay(rt);
r[rt]^=1;
}
void link(int x,int y)
{
reverse(x);
reverse(y);
f[x]=y;
size[y]+=sum[x];
pushup(y);
}
int main()
{
scanf("%d%d",&n,&m);
while(m--)
{
scanf("%s",ch);
scanf("%d%d",&x,&y);
if(ch[0]=='A')
{
link(x,y);
}
else
{
reverse(x);
reverse(y);
printf("%lld\n",1ll*(sum[y]-sum[x])*sum[x]);
}
}
}
BZOJ4530[Bjoi2014]大融合——LCT维护子树信息的更多相关文章
- 【bzoj4530】[Bjoi2014]大融合 LCT维护子树信息
题目描述 小强要在N个孤立的星球上建立起一套通信系统.这套通信系统就是连接N个点的一个树. 这个树的边是一条一条添加上去的.在某个时刻,一条边的负载就是它所在的当前能够联通的树上路过它的简单路径的数量 ...
- bzoj 4530 [Bjoi2014]大融合——LCT维护子树信息
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=4530 LCT维护子树 siz .设 sm[ ] 表示轻儿子的 siz 和+1(1是自己的si ...
- [BJOI2014]大融合 LCT维护子树信息
Code: #include <cstdio> #include <algorithm> #include <cstring> #include <strin ...
- Loj 2230. 「BJOI2014」大融合 (LCT 维护子树信息)
链接:https://loj.ac/problem/2230 思路: 设立siz数组保存虚点信息,sum表示总信息 维护子树信息link操作和access操作需要进行一些改动 可参考博客:https: ...
- bzoj 4530 大融合 —— LCT维护子树信息
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=4530 用LCT维护子树 size,就是实边和虚边分开维护: 看博客:https://blog ...
- 大融合——LCT维护子树信息
题目 [题目描述] 小强要在 $N$ 个孤立的星球上建立起一套通信系统.这套通信系统就是连接 $N$ 个点的一个树.这个树的边是一条一条添加上去的.在某个时刻,一条边的负载就是它所在的当前能够联通的树 ...
- P4219 [BJOI2014]大融合 LCT维护子树大小
\(\color{#0066ff}{ 题目描述 }\) 小强要在\(N\)个孤立的星球上建立起一套通信系统.这套通信系统就是连接\(N\)个点的一个树. 这个树的边是一条一条添加上去的.在某个时刻,一 ...
- [BZOJ4530][Bjoi2014]大融合 LCT + 启发式合并
[BZOJ4530][Bjoi2014]大融合 试题描述 小强要在N个孤立的星球上建立起一套通信系统.这套通信系统就是连接N个点的一个树. 这个树的边是一条一条添加上去的.在某个时刻,一条边的负载就是 ...
- BZOJ4530:[BJOI2014]大融合(LCT)
Description 小强要在N个孤立的星球上建立起一套通信系统.这套通信系统就是连接N个点的一个树. 这个树的边是一条一条添加上去的.在某个时刻,一条边的负载就是它所在的当前能够 联通的树上路过它 ...
随机推荐
- 【Codeforces 152E】Garden
Codeforces 152 E 题意:给你一个\(n\times m\)的格子,每个格子里面有一个值\(a_{i,j}\)表示如果要将这个格子变成路的话需要花费这么多代价.现在有\(k\)个特殊格子 ...
- 错误:“Manifest merger failed with multiple errors, see logs”
今天用Android Studio打开以前写个的项目后,出现如下错误:Manifest merger failed with multiple errors, see logs 现象是: 遇到这个问 ...
- Sublime Text 3 Build 3143 可用License
—– BEGIN LICENSE —–TwitterInc200 User LicenseEA7E-8900071D77F72E 390CDD93 4DCBA022 FAF6079061AA12C0 ...
- blob 对象 实现分片上传 及 显示进度条
blob对象介绍 一个 Blob对象表示一个不可变的, 原始数据的类似文件对象.Blob表示的数据不一定是一个JavaScript原生格式 blob对象本质上是js中的一个对象,里面可以储存大量的二进 ...
- [拍摄]『ROSE 拆解』SONY 摄像机镜头拆解。
镜头是从一部很老的sony摄像机上拆下来的.具体型号记不清了.应该是DCR系列的某个型号.使用Hi8磁带.NNN年前摄像机因为意外进水报废...拆拆去最后只剩下镜头了.镜头总成. 图片:IMG_201 ...
- SQL2005中的事务与锁定(九)-(2)- 转载
-------------------------------------------------------------------------- Author : HappyFlyStone -- ...
- TiDB入门(四):从入门到“跑路”
前言 前面三章基本把 TiDB 的环境弄好了,也做了一下简单测试,有兴趣的同学可以看一下: TiDB 入门(一):TiDB 简介 TiDB 入门(二):虚拟机搭建 TiDB-Ansible 部署方案 ...
- 分布式监控系统Zabbix3.4-钉钉告警配置记录
群机器人是钉钉群的高级扩展功能,群机器人可以将第三方服务的信息聚合到群聊中,实现自动化的信息同步.例如:通过聚合GitHub,GitLab等源码管理服务,实现源码更新同步:通过聚合Trello,JIR ...
- 结对编程 学习手记ver1.2
团队成员: 226 高雅智 164刘浩然: 一 结对编程 辛辛苦苦搞了好久的时间,就是没有人家的快,明明算法都差不多,哎~~~ 结对的优势,在于双方互相督促,对于代码能贡献自己的能力,人多力量 ...
- 代码规范与复审2——个人博客作业week
一.关于编程规范的重要性论证 1.不支持. 1)编程规范有利于自己提高编程效率和编程质量.编码是程序员的职责,一个好的信息技术产品必然有高质量的代码,高质量的代码首先 一点它必须遵守某种编程规范.如果 ...