[抄题]:

On an NxN chessboard, a knight starts at the r-th row and c-th column and attempts to make exactly Kmoves. The rows and columns are 0 indexed, so the top-left square is (0, 0), and the bottom-right square is (N-1, N-1).

A chess knight has 8 possible moves it can make, as illustrated below. Each move is two squares in a cardinal direction, then one square in an orthogonal direction.

Each time the knight is to move, it chooses one of eight possible moves uniformly at random (even if the piece would go off the chessboard) and moves there.

The knight continues moving until it has made exactly K moves or has moved off the chessboard. Return the probability that the knight remains on the board after it has stopped moving.

Example:

Input: 3, 2, 0, 0
Output: 0.0625
Explanation: There are two moves (to (1,2), (2,1)) that will keep the knight on the board.
From each of those positions, there are also two moves that will keep the knight on the board.
The total probability the knight stays on the board is 0.0625.

[暴力解法]:

时间分析:

空间分析:

[优化后]:

时间分析:

空间分析:

[奇葩输出条件]:

[奇葩corner case]:

[思维问题]:

以为就是数学题算一下就行了。没想到每走一步,棋盘都要变化,所以要用2个dp数组:初始和现在。

[英文数据结构或算法,为什么不用别的数据结构或算法]:

[一句话思路]:

没想到每走一步,棋盘都要变化,所以要用2个dp数组:初始和现在。进行坐标型dp。

[输入量]:空: 正常情况:特大:特小:程序里处理到的特殊情况:异常情况(不合法不合理的输入):

[画图]:

[一刷]:

  1. ij是新扩展的,row col是原来已有的。所以要用新扩展的+原来已有的。
  2. 答案要求小数时,初始化数组为double型。

[二刷]:

[三刷]:

[四刷]:

[五刷]:

[五分钟肉眼debug的结果]:

[总结]:

没想到每走一步,棋盘都要变化,所以要用2个dp数组:初始和现在。

[复杂度]:Time complexity: O(n2) Space complexity: O(n2)

[算法思想:迭代/递归/分治/贪心]:

[关键模板化代码]:

二维矩阵需要一行行地填:

for (double[] row : dp0) {
Arrays.fill(row, 1);
}

[其他解法]:

[Follow Up]:

[LC给出的题目变变变]:

[代码风格] :

[是否头一次写此类driver funcion的代码] :

[潜台词] :

class Solution {
int[][] directions = {{1, 2}, {1, -2}, {2, - 1}, {2, 1}, {-1, 2}, {-1, -2}, {-2, 1}, {-2, -1}};
public double knightProbability(int N, int K, int r, int c) {
//corner case //initialization: len, dp0[][] and fill with 1
double[][] dp0 = new double[N][N];
for (double[] row : dp0) {
Arrays.fill(row, 1);
} //calculate dp1, give to dp0
for (int l = 0; l < K; l++) {
double[][] dp1 = new double[N][N];
for (int i = 0; i < N; i++) {
for (int j = 0; j < N; j++) {
for (int[] d : directions) {
int row = i + d[0];
int col = j + d[1];
if (valid(row, col, N)) dp1[i][j] += dp0[row][col];
}
}
}
dp0 = dp1;
}
return dp0[r][c] / (Math.pow(8, K));
} public boolean valid(int x, int y, int len) {
if (0 <= x && x < len && 0 <= y && y < len) return true;
return false;
}
}

688. Knight Probability in Chessboard棋子留在棋盘上的概率的更多相关文章

  1. leetcode 576. Out of Boundary Paths 、688. Knight Probability in Chessboard

    576. Out of Boundary Paths 给你一个棋盘,并放一个东西在一个起始位置,上.下.左.右移动,移动n次,一共有多少种可能移出这个棋盘 https://www.cnblogs.co ...

  2. 【LeetCode】688. Knight Probability in Chessboard 解题报告(Python)

    作者: 负雪明烛 id: fuxuemingzhu 个人博客: http://fuxuemingzhu.cn/ 题目地址:https://leetcode.com/problems/knight-pr ...

  3. LeetCode 688. Knight Probability in Chessboard

    原题链接在这里:https://leetcode.com/problems/knight-probability-in-chessboard/description/ 题目: On an NxN ch ...

  4. 688. Knight Probability in Chessboard

    On an NxN chessboard, a knight starts at the r-th row and c-th column and attempts to make exactly K ...

  5. 【leetcode】688. Knight Probability in Chessboard

    题目如下: On an NxN chessboard, a knight starts at the r-th row and c-th column and attempts to make exa ...

  6. LeetCode——688. Knight Probability in Chessboard

    一.题目链接:https://leetcode.com/problems/knight-probability-in-chessboard/ 二.题目大意: 给定一个N*N的棋盘和一个初始坐标值(r, ...

  7. [LeetCode] Knight Probability in Chessboard 棋盘上骑士的可能性

    On an NxN chessboard, a knight starts at the r-th row and c-th column and attempts to make exactly K ...

  8. [Swift]LeetCode688. “马”在棋盘上的概率 | Knight Probability in Chessboard

    On an NxN chessboard, a knight starts at the r-th row and c-th column and attempts to make exactly K ...

  9. Knight Probability in Chessboard

    2018-07-14 09:57:59 问题描述: 问题求解: 本题本质上是个挺模板的题目.本质是一个求最后每个落点的数目,用总的数目来除有所可能生成的可能性.这种计数的问题可以使用动态规划来进行解决 ...

随机推荐

  1. lua luv分析

    地址 https://github.com/richardhundt/luv

  2. Python手记(二)

    1.map函数 map函数用于将指定的数据成员都使用指定函数进行处理. 比如: map(float, arr) map(square, arr) 这两个函数分别将arr中成员转换为float类型,以及 ...

  3. Guava 6:Concurrency

    一.引子 有点经验的工程师一定对多线程比较熟悉,JDK封装的FutureTask实现了这一功能.如下图: FutureTask实现了RunnableFuture接口,而RunnableFuture接口 ...

  4. JS 60秒后重发送验证码

    //settime($("#getPhoneCode"),60); function settime($obj, time) { if (time == 0) { $obj.att ...

  5. xtrabackup的执行过程

    XtraBackup的执行过程 执行全量备份过程中对数据库进行的操作https://www.cnblogs.com/digdeep/p/4946230.html 可以看出执行xtrabackup进行全 ...

  6. 多版本opencv管理; find_package()的原理解析

    近期用cmake编译程序时,报错找不到opencv2.由于我电脑里安装了多个版本的opencv,管理不善,借此机会梳理一下思路. 1. Cmake -- find_package(Opencv REQ ...

  7. 关于rtsp的时间戳问题

    这里主要关注的rtp包的时间戳,在rtsp中,播放器的1S钟的定义是和媒体的采样率有关的. 例如视频的采样率是90K,那么最小时间粒度(单位)是1/90000秒,再转换成ms就是 1/90毫秒,这个就 ...

  8. Spring Boot使用单元测试

    一.Service层单元测试: 代码如下: package com.dudu.service;import com.dudu.domain.LearnResource;import org.junit ...

  9. 概念吓死人的webservice

    前倾提要:这是我七拼八凑,自己用手打出来的头一篇了!都是别人的想法,我抄袭的,我坦白,我这只是总结一下觉得有用的 本来题目想叫(1)REST API 和WebService(2)REST 样式和 SO ...

  10. Linux下载命令之rpm和yum比较

    RPM和YUM比较 rpm 是linux的一种软件包名称,以.rmp结尾,安装的时候语法为:rpm -ivh,rpm包的安装有一个很大的缺点就是文件的关联性太大,有时候装一个软件要安装很多其他的软件包 ...