code force 403B.B. The Meeting Place Cannot Be Changed
5 seconds
256 megabytes
standard input
standard output
The main road in Bytecity is a straight line from south to north. Conveniently, there are coordinates measured in meters from the southernmost building in north direction.
At some points on the road there are n friends, and i-th of them is standing at the point xi meters and can move with any speed no greater than vi meters per second in any of the two directions along the road: south or north.
You are to compute the minimum time needed to gather all the n friends at some point on the road. Note that the point they meet at doesn't need to have integer coordinate.
The first line contains single integer n (2 ≤ n ≤ 60 000) — the number of friends.
The second line contains n integers x1, x2, ..., xn (1 ≤ xi ≤ 109) — the current coordinates of the friends, in meters.
The third line contains n integers v1, v2, ..., vn (1 ≤ vi ≤ 109) — the maximum speeds of the friends, in meters per second.
Print the minimum time (in seconds) needed for all the n friends to meet at some point on the road.
Your answer will be considered correct, if its absolute or relative error isn't greater than 10 - 6. Formally, let your answer be a, while jury's answer be b. Your answer will be considered correct if
holds.
3
7 1 3
1 2 1
2.000000000000
4
5 10 3 2
2 3 2 4
1.400000000000
In the first sample, all friends can gather at the point 5 within 2 seconds. In order to achieve this, the first friend should go south all the time at his maximum speed, while the second and the third friends should go north at their maximum speeds.
/*
题意:有n个朋友在一条南北方向的坐标轴上,n个朋友每人都有自己的最大速度,现在让你求出让n个朋友在
某点汇合的最小时间 初步思路:二分,二分判断的条件就是这些点,在时间t内向南走的最大距离,和向北走的最小距离能不能相
遇,如果能相遇的话,那么这个时间就可以
*/ #include<bits/stdc++.h>
using namespace std;
long long n,i,x[],v[];
long double l,r,t,eps,mx,mn;
int main()
{
// freopen("in.txt","r",stdin);
cin>>n;
for (i=;i<=n;i++) cin>>x[i];
for (i=;i<=n;i++) cin>>v[i];
r=1e9; eps=1e-;
while(r-l>eps)
{
t=(r+l)/2.0;
mx=x[]-t*v[];
mn=x[]+t*v[];
for(i=;i<=n;i++)
{
if (mx<x[i]-t*v[i])//向南走能到达的最大的范围
mx=x[i]-t*v[i];
if (mn>x[i]+t*v[i])//向北走能到达的最小的范围
mn=x[i]+t*v[i];
}
// cout<<mx<<" "<<mn<<endl;
if (mx<=mn) //如果向南走的距离小于等于向北走的距离,就缩小二分的边界
r=t;
else //否则就扩大二分的边界
l=t;
}
cout<<fixed<<l;
}
code force 403B.B. The Meeting Place Cannot Be Changed的更多相关文章
- codeforces 782B The Meeting Place Cannot Be Changed (三分)
The Meeting Place Cannot Be Changed Problem Description The main road in Bytecity is a straight line ...
- Cf Round #403 B. The Meeting Place Cannot Be Changed(二分答案)
The Meeting Place Cannot Be Changed 我发现我最近越来越zz了,md 连调程序都不会了,首先要有想法,之后输出如果和期望的不一样就从输入开始一步一步地调啊,tmd现在 ...
- Codeforces Round #403 (Div. 2, based on Technocup 2017 Finals) B. The Meeting Place Cannot Be Changed
地址:http://codeforces.com/contest/782/problem/B 题目: B. The Meeting Place Cannot Be Changed time limit ...
- AC日记——The Meeting Place Cannot Be Changed codeforces 780b
780B - The Meeting Place Cannot Be Changed 思路: 二分答案: 代码: #include <cstdio> #include <cstrin ...
- Codeforces 782B The Meeting Place Cannot Be Changed(二分答案)
题目链接 The Meeting Place Cannot Be Changed 二分答案即可. check的时候先算出每个点可到达的范围的区间,然后求并集.判断一下是否满足l <= r就好了. ...
- codeforces 782B The Meeting Place Cannot Be Changed+hdu 4355+hdu 2438 (三分)
B. The Meeting Place Cannot Be Change ...
- CodeForce-782B The Meeting Place Cannot Be Changed(高精度二分)
https://vjudge.net/problem/CodeForces-782B B. The Meeting Place Cannot Be Changed time limit per tes ...
- B. The Meeting Place Cannot Be Changed
B. The Meeting Place Cannot Be Changed time limit per test 5 seconds memory limit per test 256 megab ...
- pycharm debug后会出现 step over /step into/step into my code /force step into /step out 分别表示
1.debug,全部打印 2.打断点debug,出现单步调试等按钮,只运行断点前 3.setup over 调试一行代码 4.setup out 运行断点后面所有代码 5.debug窗口显示调试按钮 ...
随机推荐
- Oracle的trim( )、ltrim( )、rtrim( )三个函数的用法及注意事项
学习一下用法整理trim().ltrim().rtrim()的用法 trim().ltrim().rtrim()三个函数有两个作用,分别是: 一.去除字符串前后空格(基本用法) trim(string ...
- SVN学习笔记
一.什么是SVN? Subversion(SVN) 是一个开源的版本控制系統, 也就是说 Subversion 管理着随时间改变的数据. 这些数据放置在一个中央资料档案库(repository) 中. ...
- es6函数的rest参数和拓展运算符(...)的解析
es6的新特性对函数的功能新增加了rest参数和...的拓展运算符.这是两个什么东西呢? 先来看一个问题:如何获取一个函数除了定义的参数之外的其他参数?传统的做法是借助函数的arguments关键字来 ...
- 基于Quartz实现简单的定时发送邮件
一.什么是Quartz Quartz 是一个轻量级任务调度框架,只需要做些简单的配置就可以使用:它可以支持持久化的任务存储,即使是任务中断或服务重启后,仍可以继续运行.Quartz既可以做为独立的应用 ...
- 分享基于分布式Http长连接框架
第一次在博客园写文章,长期以来只是潜水中.本着不只索取,而要奉献的精神,随笔文章之. 现贡献一套长连接的框架.如下特性: 1:发布者可异步发送消息,消息如果发送失败,可重试发送,重试次数基于配置,消息 ...
- IOC模式理解
理解IOC inversion of control 控制反转 与 DI Dependency Injection 依赖注入概念之前,我们需要知道在一个系统的设计过程中,降低各模块之间的相 ...
- Echarts数据可视化series-pie饼图,开发全解+完美注释
全栈工程师开发手册 (作者:栾鹏) Echarts数据可视化开发代码注释全解 Echarts数据可视化开发参数配置全解 6大公共组件详解(点击进入): title详解. tooltip详解.toolb ...
- 【转载】jQuery全屏滚动插件fullPage.js
文章转载自dowebok http://www.dowebok.com/ 原文链接:http://www.dowebok.com/77.html 简介 如今我们经常能见到全屏网站,尤其是国外网站.这些 ...
- java基础---java语言概述
一.计算机编程的两种范型 1.面向过程的模型---具有线性执行特点,认为是代码作用于数据. 2.面向对象的模型---围绕它的数据(即对象)和为这个数据定义的接口来组织程序:实际上是用数据控制代码的访问 ...
- win10 UWP Markdown 含源代码
Windows下没有比较好的Markdown编辑器 我就自己写一个 csdn的Markdown很好,就是我需要截图保存有麻烦 需要把我的截图保存在本地,然后上传 这个过程比较麻烦 csdn的图没法外链 ...