CodeForces - 385C Bear and Prime Numbers (埃氏筛的美妙用法)
Recently, the bear started studying data structures and faced the following problem.
You are given a sequence of integers x1, x2, ..., xn of length n and m queries, each of them is characterized by two integers li, ri. Let's introduce f(p) to represent the number of such indexes k, that xk is divisible by p. The answer to the query li, ri is the sum: , where S(li, ri) is a set of prime numbers from segment [li, ri] (both borders are included in the segment).
Help the bear cope with the problem.
Input
The first line contains integer n (1 ≤ n ≤ 106). The second line contains n integers x1, x2, ..., xn (2 ≤ xi ≤ 107). The numbers are not necessarily distinct.
The third line contains integer m (1 ≤ m ≤ 50000). Each of the following m lines contains a pair of space-separated integers, li and ri (2 ≤ li ≤ ri ≤ 2·109) — the numbers that characterize the current query.
Output
Print m integers — the answers to the queries on the order the queries appear in the input.
Example
6
5 5 7 10 14 15
3
2 11
3 12
4 4
9
7
0
7
2 3 5 7 11 4 8
2
8 10
2 123
0
7
Note
Consider the first sample. Overall, the first sample has 3 queries.
- The first query l = 2, r = 11 comes. You need to count f(2) + f(3) + f(5) + f(7) + f(11) = 2 + 1 + 4 + 2 + 0 = 9.
- The second query comes l = 3, r = 12. You need to count f(3) + f(5) + f(7) + f(11) = 1 + 4 + 2 + 0 = 7.
- The third query comes l = 4, r = 4. As this interval has no prime numbers, then the sum equals 0.
题意:给n个数,给出m组l,r.设i为l-r之间的一个质数,这个质数能被n个数中的x个数整除,令f(i)=x.求l-r区间中所有f(i)的总和.
思路:首先考虑暴力做法,筛出1-10000000质数,然后用n个数除以l-r内的所有质数,加起来求出答案.复杂度很高,尤其是使用O(n√n)的滑稽筛法.这里可以用埃氏筛来筛质数,复杂度O(nloglogn).由于l-r有重复,所以可以事先记录,用前缀和进行优化,复杂度仍不过关,因为遍历n的复杂度仍太高.这时候可以用一些埃氏筛的美妙性质:
for(i=;i<N;i++)
{
if(!vis[i])
{
for(j=i;j<N;j+=i)
{
vis[j]=;
}
}
}
上图是一个埃氏筛的模板,我们发现当i是质数时,该程序会遍历所有i的倍数,如果我们开一个数组cnt,cnt[i]记录n中第i个数出现的数量.若j扫到cnt[j]>0,sum[i]+=cnt[j](就是有新的cnt[j]个数能整除i)
for(i=;i<N;i++)
{
if(!vis[i])
{
for(j=i;j<N;j+=i)
{
if(cnt[j])
{
sum[i]+=cnt[j];
}
vis[j]=;
}
}
}
就这么简单!
但这样竟然还是RE了,smg?!
仔细看题目,你会发现,尼玛l,r<=2*10^9....
数组开小了!
那么是滑稽的开2*10^9然后拿MLE回家还是再优化?
我们发现sum[r](r>10^7)的值和sum[10^7]有区别吗....
显然是没有的,因为不存在比10^7大的n.
所以就在优化一下了~
最后代码:
#include<cstdio>
#define N 10000010
using namespace std; int k,cnt[N],vis[N],sum[N],n,i,j; int main()
{
scanf("%d",&n);
for(i=;i<=n;i++)
{
scanf("%d",&k);
cnt[k]++;
}
for(i=;i<N;i++)
{
if(!vis[i])
{
for(j=i;j<N;j+=i)
{
if(cnt[j])
{
sum[i]+=cnt[j];
}
vis[j]=;
}
}
}
for(i=;i<=N;i++)
{
sum[i]+=sum[i-];
}
int t,l,r;
scanf("%d",&t);
while(t--)
{
scanf("%d%d",&l,&r);
if (l>N)
{
l=N-;
}
if (r>N)
{
r=N;
}
long long ans=sum[r]-sum[l-];
printf("%lld\n",ans);
}
}
每天刷题,身体棒棒!
CodeForces - 385C Bear and Prime Numbers (埃氏筛的美妙用法)的更多相关文章
- Codeforces 385C - Bear and Prime Numbers(素数筛+前缀和+hashing)
385C - Bear and Prime Numbers 思路:记录数组中1-1e7中每个数出现的次数,然后用素数筛看哪些能被素数整除,并加到记录该素数的数组中,然后1-1e7求一遍前缀和. 代码: ...
- Codeforces 385C Bear and Prime Numbers
题目链接:Codeforces 385C Bear and Prime Numbers 这题告诉我仅仅有询问没有更新通常是不用线段树的.或者说还有比线段树更简单的方法. 用一个sum数组记录前n项和, ...
- Codeforces 385C Bear and Prime Numbers(素数预处理)
Codeforces 385C Bear and Prime Numbers 其实不是多值得记录的一道题,通过快速打素数表,再做前缀和的预处理,使查询的复杂度变为O(1). 但是,我在统计数组中元素出 ...
- CodeForces 385C Bear and Prime Numbers 素数打表
第一眼看这道题目的时候觉得可能会很难也看不太懂,但是看了给出的Hint之后思路就十分清晰了 Consider the first sample. Overall, the first sample h ...
- codeforces 385C Bear and Prime Numbers 预处理DP
题目链接:http://codeforces.com/problemset/problem/385/C 题目大意:给定n个数与m个询问区间,问每个询问区间中的所有素数在这n个数中被能整除的次数之和 解 ...
- 「CF779B」「LOJ#10201.」「一本通 6.2 练习 4」Sherlock and His Girlfriend(埃氏筛
题目描述 原题来自:Codeforces Round #400 B. Sherlock 有了一个新女友(这太不像他了!).情人节到了,他想送给女友一些珠宝当做礼物. 他买了 nnn 件珠宝.第 iii ...
- 数论(8):min_25 筛(扩展埃氏筛)
min_25 筛介绍 我们考虑这样一个问题. \[ans=\sum_{i = 1}^nf(i)\\ \] 其中 \(1 \le n \le 10^{10}\) 其中 \(f(i)\) 是一个奇怪的函数 ...
- cf1154G 埃氏筛应用
直接用埃氏筛也可以做,但是这题写起来有点恶臭.. 更加简单的写法是直接枚举gcd=k,然后里面再枚举一次i*k,即找到k两个最小的倍数,看起来复杂度很高,但其实也是埃氏筛的复杂度 因为每次枚举gcd, ...
- [JXOI 2018] 游戏 解题报告 (组合数+埃氏筛)
interlinkage: https://www.luogu.org/problemnew/show/P4562 description: solution: 注意到$l=1$的时候,$t(p)$就 ...
随机推荐
- [js学习笔记] 原型链理解
js中只有对象,包括对象,函数,常量等. prototype 只有函数里有这个属性. 对象里可以设置这个属性,但是没这个属性的意义 prototype指向一个对象,可以添加想要的方法. 该对象里有一个 ...
- Java EE开发环境——MyEclipse2017破解 和 Tomcat服务器配置
Java EE开发,我们可以搭建如下开发环境: 底层运行环境:jdk 和 jre. Web服务器:Tomcat 后台数据库:SQL Server 可视化集成开发环境:MyEclipse Java EE ...
- Longge's problem poj2480 欧拉函数,gcd
Longge's problem Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 6918 Accepted: 2234 ...
- 跨主机使用 Rex-Ray volume - 每天5分钟玩转 Docker 容器技术(77)
上一节我们在 docker1 上的 MySQL 容器中使用了 Rex-Ray volume mysqldata,更新了数据库.现在容器已经删除,今天将演示在 docker2 中重新使用这个卷. 在 d ...
- docker命令不需要敲sudo的方法
由于docker daemon需要绑定到主机的Unix socket而不是普通的TCP端口,而Unix socket的属主为root用户,所以其他用户只有在命令前添加sudo选项才能执行相关操作. 如 ...
- 【Learning】多项式乘法与快速傅里叶变换(FFT)
简介: FFT主要运用于快速卷积,其中一个例子就是如何将两个多项式相乘,或者高精度乘高精度的操作. 显然暴搞是$O(n^2)$的复杂度,然而FFT可以将其将为$O(n lg n)$. 这看起来十分玄学 ...
- Mysql 协议嗅探
需求 监听通过网卡的所有mysql流量,进行解析,可在不影响现有业务情况下,进行入侵检测(IDS)或数据集成 协议要点 起初发现 用mysql-front访问数据库和mysql 的客户端访问时数据包格 ...
- ImageSharp一个专注于NetCore平台图像处理的开源项目
今天大家分享的是一个专注于NetCore平台图像处理的开源项目,老实说为这篇文章取名字想了5分钟,可能是词穷亦或是想更好的表达出这款开源项目的作用:这个项目在图像处理方面有很多功能,如:缩放,裁剪,绘 ...
- Feature Scaling深入理解
Feature Scaling 可以翻译为特征归一化,或者数据归一化,比如统计学习中,我们一般都会对不同量纲的特征做归一化,深度学习中经常会谈到增加的BN层,LRN层会带来训练收敛速度的提升,等等.问 ...
- Java继承--子父类中的构造函数
子父类中的构造函数的特点: 1.在子类构造对象时,发现,访问子类构造函数时,父类构造函数也运行了. 原因是:在子类的构造函数中第一行有一个默认的隐式语句. super(); 类似于this(); ...