题目

题目

思路

一看就是单点更新和区间求和,故用线段树做。

一开始没搞清楚,题目给定的i是从0开始还是从1开始,还以为是从1开始,导致后面把下标都改掉了,还有用区间更新的代码去实现单点更新,虽然两者思路是一样的,但是导致TLE,因为区间会把所有都递归一遍,加了个判断,就ok了。

if (idx <= middle) {
this->updateHelper(curIdx << 1, leftIdx, middle, idx, val);
}
else {
this->updateHelper((curIdx << 1) | 1, middle+1, rightIdx, idx, val);
}

实现

//

#include "../PreLoad.h"

class Solution {
public:
class NumArray {
public:
struct Node {
int val;
int sum;
}; vector<Node> nodes;
vector<int> nums; NumArray(vector<int> nums) {
this->nums = nums;
this->nodes.reserve(4 * nums.size());
for (int i = 1; i <= 4 * nums.size(); i++) {
Node node;
node.val = 0;
node.sum = 0;
this->nodes.push_back(node);
} this->buildTree(1, 1, (int)nums.size());
} // 单点更新
void update(int i, int val) {
if (i < 0 || i > this->nums.size()) {
return ;
} this->updateHelper(1, 1, (int)this->nums.size(), i+1, val);
this->nums[i] = val;
} int sumRange(int i, int j) {
if (i > j) {
return 0;
} return this->sumHelper(1, 1, (int)this->nums.size(), i+1, j+1);
} protected:
void buildTree(int curIdx, int leftIdx, int rightIdx) {
if (leftIdx == rightIdx) {
this->nodes[curIdx].val = this->nums[leftIdx-1];
this->nodes[curIdx].sum = this->nums[leftIdx-1];
return ;
}
else if (leftIdx > rightIdx) {
return ;
} int middle = (leftIdx + rightIdx) / 2;
this->buildTree(curIdx << 1, leftIdx, middle);
this->buildTree((curIdx << 1) | 1, middle+1, rightIdx); this->updateFromSon(curIdx);
} void updateFromSon(int curIdx) {
int leftIdx = curIdx << 1;
int rightIdx = leftIdx | 1; this->nodes[curIdx].sum = this->nodes[leftIdx].sum + this->nodes[rightIdx].sum;
} int sumHelper(int curIdx, int leftIdx, int rightIdx, int leftRange, int rightRange) {
// 不在范围内
if (leftIdx > rightRange || rightIdx < leftRange) {
return 0;
} // 在范围内
if (leftIdx >= leftRange && rightIdx <= rightRange) {
return this->nodes[curIdx].sum;
} int middle = (leftIdx + rightIdx) / 2;
int left = sumHelper(curIdx << 1, leftIdx, middle, leftRange, rightRange);
int right = sumHelper((curIdx << 1) | 1, middle+1, rightIdx, leftRange, rightRange);
return left + right;
} void updateHelper(int curIdx, int leftIdx, int rightIdx, int idx, int val) {
if (leftIdx > rightIdx) {
return;
} if (leftIdx == rightIdx) {
if (idx == leftIdx) {
this->nodes[curIdx].val = val;
this->nodes[curIdx].sum = val;
}
return ;
} int middle = (leftIdx + rightIdx) / 2;
if (idx <= middle) {
this->updateHelper(curIdx << 1, leftIdx, middle, idx, val);
}
else {
this->updateHelper((curIdx << 1) | 1, middle+1, rightIdx, idx, val);
} this->updateFromSon(curIdx);
}
}; void test() {
vector<int> nums = {7, 2, 7, 2, 0}; NumArray *obj = new NumArray(nums);
int idx, val;
while (cin >> idx >> val) {
obj->update(idx, val); int sum = obj->sumRange(0, 4);
cout << "sum: " << sum << endl;
}
}
};
/**
* Your NumArray object will be instantiated and called as such:
* NumArray obj = new NumArray(nums);
* obj.update(i,val);
* int param_2 = obj.sumRange(i,j);
*/

[LeetCode] Range Sum Query - Mutable 题解的更多相关文章

  1. [LeetCode] Range Sum Query - Mutable 区域和检索 - 可变

    Given an integer array nums, find the sum of the elements between indices i and j (i ≤ j), inclusive ...

  2. Leetcode: Range Sum Query - Mutable && Summary: Segment Tree

    Given an integer array nums, find the sum of the elements between indices i and j (i ≤ j), inclusive ...

  3. [Leetcode Week16]Range Sum Query - Mutable

    Range Sum Query - Mutable 题解 原创文章,拒绝转载 题目来源:https://leetcode.com/problems/range-sum-query-mutable/de ...

  4. LeetCode Range Sum Query 2D - Mutable

    原题链接在这里:https://leetcode.com/problems/range-sum-query-2d-mutable/ 题目: Given a 2D matrix matrix, find ...

  5. [LeetCode] Range Sum Query 2D - Mutable 二维区域和检索 - 可变

    Given a 2D matrix matrix, find the sum of the elements inside the rectangle defined by its upper lef ...

  6. 【刷题-LeetCode】307. Range Sum Query - Mutable

    Range Sum Query - Mutable Given an integer array nums, find the sum of the elements between indices ...

  7. [LeetCode] Range Sum Query 2D - Immutable 二维区域和检索 - 不可变

    Given a 2D matrix matrix, find the sum of the elements inside the rectangle defined by its upper lef ...

  8. [LeetCode] Range Sum Query - Immutable 区域和检索 - 不可变

    Given an integer array nums, find the sum of the elements between indices i and j (i ≤ j), inclusive ...

  9. [LeetCode] 307. Range Sum Query - Mutable 区域和检索 - 可变

    Given an integer array nums, find the sum of the elements between indices i and j (i ≤ j), inclusive ...

随机推荐

  1. 蓝桥网试题 java 基础练习 字母图形

    ----------------------------------------------------------------- 不知道说啥 感觉好像偏离主体思想了 但是这样写好简单 ------- ...

  2. Unsupported major.minor version 52.0错误解决 Ubuntu JDK8 安装配置

    Unsupported major.minor version 52.0错误一般是因为应用程序需要JDK8而ubuntu默认的是jdk7,所以需要切换到jdk8才能解决这个问题. 本文使用PPA方式安 ...

  3. 税号输入框 将input框中的输入自动转化成半角大写

    这两天出了这么一个需求,输入税号的时候,需要自动将其转化为半角大写,并且阻止标点符号中文汉字的输入.(下面会有:全半角转换.文本框选中.光标位置判断.设置光标位置 这些内容) 然后我就开始了慢慢查找资 ...

  4. JS批量替换内容中关键词为超链接,避开已存在的链接和alt、title中的关键词

    懂点seo的人都知道要给内容中关键词加上链接,形成站内锚文本链接,这对seo有很大的帮助. 思路就是在数据库中录入若干个关键词和关键词对应的链接,当然链接可以根据关键词的id自动生成,或者直接用关键词 ...

  5. iphone在iframe页面的宽度不受父页面影响,避免撑开页面

    工作中有个需求,就是产品页面通过iframe引用显示产品协议页,要求不要横向滑动,只需要竖向滑动,但在iphone中引用的iframe会撑开父页的宽度,而在android端浏览器这不会. <di ...

  6. windows 2003装.net 4.0时提示 WIC windows Imaging Component

    运行此安装程序之前,必须安装32位windows映像处理组件(WIC) WIC windows Imaging Component下载地址: http://download.microsoft.com ...

  7. 服务器 'XXXXXX' 上的 MSDTC 不可用。解决方法

    今天在C#中操作数据库的时候突然发现这个问题:服务器 'USER-XXX' 上的 MSDTC 不可用. 解决方法: 在windows控制面板 --> 管理工具 --> 服务 --> ...

  8. Laravel分页

    Laravel使用的过程中,有些功能把前端页面的表达"写死了",比如分页的翻页按钮! 当然你会说Laravel的Bootstrap样式也很好看啊,但是实际项目中,翻页按钮常常需要满 ...

  9. c风格字符串,字符串字面值,c++字符串

    C风格字符串:本质上就是以空字符null为结束符的数组 可以简单的理解为:有'\0'的是c风格字符串,无'\0'的是普通字符数组 字符串字面值:是一串常量字符,字符串字面值常量用双引号括起来的零个或多 ...

  10. SpringCache缓存初探

    body,table tr { background-color: #fff } table tr td,table tr th { border: 1px solid #ccc; text-alig ...