要求:

  • get(key):如果key在cache中,则返回对应的value值,否则返回null
  • set(key,value):如果key不在cache中,则将该(key,value)插入cache中(注意,如果cache已满,则必须把最近最久未使用的元素从cache中删除);如果key在cache中,则重置value的值。
  • set和get的时间复杂度都是O(1)。

两个map


/**
* 思路:时间复杂度是O(1),一下子想到的是map。但是怎么进行淘汰呢?需要记录时间,且查找的复杂度也是O(1),那也用map吧。
* put之前,需要先查看是否包含key,如果包含,删掉之前的数据,再放进新的数据,且把key的访问时间更新。淘汰最早访问数据的时候,还需要根据访问时间查询key。
* 所以,需要的操作包括:根据key获取value和access;根据access获取key。
*/
public class MyLRUMapSample<K, V> {
//cache的容量
private int capacity;
//存储key-value/access的map
private HashMap<K, Pair<V>> valueMap;
//存储access-key的map,使用SortedMap,对access进行排序
private SortedMap<Long, K> accessKeyMap; public MyLRUMapSample(){}
public MyLRUMapSample(int capacity){
this.capacity = capacity;
valueMap = new HashMap<K, Pair<V>>();
accessKeyMap = new TreeMap<Long, K>();
} public V get(K key){
if(!valueMap.containsKey(key)){
return null;
}
//修改access
Long access = accessKeyMap.lastKey() + 1;
accessKeyMap.remove(valueMap.get(key).access);
accessKeyMap.put(access, key);
valueMap.get(key).access = access;
return valueMap.get(key).value;
} public void put(K key, V value){
//如果含有值,则更新
if(valueMap.containsKey(key)){
Long oldAccess = valueMap.get(key).access;
accessKeyMap.remove(oldAccess);
valueMap.remove(key);
} //如果存储已满,则淘汰掉最早访问的
if(valueMap.size() >= capacity){
Long oldAccess = accessKeyMap.firstKey();
valueMap.remove(accessKeyMap.get(oldAccess));
accessKeyMap.remove(oldAccess);
} //添加最新的数据
Long access = accessKeyMap.isEmpty() ? 0 : accessKeyMap.lastKey() + 1;
valueMap.put(key, new Pair(access, value));
accessKeyMap.put(access, key);
} //访问时间和value值
class Pair<V>{
public Long access;
public V value;
public Pair(){}
public Pair(Long access, V value){
this.access = access;
this.value = value;
}
} public K getOldestKey(){
return accessKeyMap.isEmpty() ? null : accessKeyMap.get(accessKeyMap.firstKey());
} public K getLatestKey(){
return accessKeyMap.isEmpty() ? null : accessKeyMap.get(accessKeyMap.lastKey());
} public static void main(String[] args) {
LinkedListMapLRUSample<Integer, Integer> sample = new LinkedListMapLRUSample<Integer, Integer>(2);
Assert.check(sample.getLatestKey() == null);
Assert.check(sample.get(2) == null);
sample.put(2, 1);
sample.put(2, 2);
Assert.check(sample.get(2).intValue() == 2);
sample.put(1, 2);
sample.put(1, 3);
Assert.check(sample.get(1) == 3);
Assert.check(sample.get(2).intValue() == 2); sample.put(3, 3);
Assert.check(sample.get(1) == null);
} }

双向链表+hashMap

/**
* 使用LinkedList存储数据,从头部插入,从尾部淘汰。这样就保证了容量和淘汰规则正确性。
* 使用hashMap,通过key找到value。
*/
public class LinkedListMapLRUSample<K,V> { class Node<K, V>{
public K key;
public V value;
public Node preNode;
public Node nextNode;
public Node(){}
public Node(K key, V value, Node preNode, Node nextNode){
this.key = key;
this.value = value;
this.preNode = preNode;
this.nextNode = nextNode;
}
} private Node<K,V> head;
private Node<K,V> tail;
private HashMap<K,Node<K, V>> valueMap;
private int capacity; public LinkedListMapLRUSample(){}
public LinkedListMapLRUSample(int capacity){
this.capacity = capacity;
valueMap = new HashMap<K,Node<K, V>>();
} public void put(K key, V value){
if(head == null){
head = new Node(key, value, null, null);
tail = head;
valueMap.put(key, head);
return;
} //如果已经包含了数据,需要更新
if(valueMap.containsKey(key)){
valueMap.get(key).value = value;
moveToHead(key);
return;
} //满容量,需要淘汰掉最旧的数据
if(valueMap.size() >= capacity){
valueMap.remove(tail.key);
tail = tail.preNode;
if(tail != null){
tail.nextNode = null;
}
} insertAsHead(key, value); } private void insertAsHead(K key, V value){
//在头部添加新节点
Node target = new Node(key, value, null, head);
if(head != null){
head.preNode = target;
target.nextNode = head;
}
valueMap.put(key, target);
head = target;
} private void moveToHead(K key){
Node target = valueMap.get(key);
//头部元素
if(target.preNode == null){
return;
}
//尾部元素
if(target.nextNode == null){
tail = target.preNode;
tail.nextNode = null;
}else{
target.preNode.nextNode = target.nextNode;
target.nextNode.preNode = target.preNode;
} target.preNode = null;
target.nextNode = head;
head.preNode = target;
head = target;
} public V get(K key){
if(!valueMap.containsKey(key)){
return null;
}
moveToHead(key);
return valueMap.get(key).value;
} public K getLatestKey(){
return head == null ? null : head.key;
} public K getOldestKey(){
return tail == null ? null : tail.key;
} public static void main(String[] args) {
LinkedListMapLRUSample<Integer, Integer> sample = new LinkedListMapLRUSample<Integer, Integer>(2);
Assert.check(sample.getLatestKey() == null);
Assert.check(sample.get(2) == null);
sample.put(2,1);
sample.put(2, 2);
Assert.check(sample.get(2).intValue() == 2);
sample.put(1, 2);
sample.put(1, 3);
Assert.check(sample.get(1) == 3);
Assert.check(sample.get(2).intValue() == 2); sample.put(3, 3);
Assert.check(sample.get(1) == null);
}
}

需要根据访问时间或者插入时间进行排序时,考虑使用双向链表。

最先插入淘汰和最少访问淘汰

  • 最先插入淘汰,即FIFO。也就是要求set操作时,新数据放在head,get操作不需要移动。那么,只需要在get操作的时候直接返回valueMap中的数据即可。
  • 最少访问淘汰,是按照访问次数排序,将访问次数最少的数据删除。

    可以使用两个map实现,valueMap(HashMap)和accessCountMap(SortedMap)。accessCount初始为1,get/put时,accessCount自增,并按照accessCount排序。

如果用数组和map实现,就需要accessCount自增后,进行重排序;或者在需要淘汰的时候进行重排序。

LinkedHashMap源码解读

LinkedHashMap使用一个双向链表加一个HashMap。同时有一个成员变量accessOrder控制淘汰策略:为true 表示按照LRU方式淘汰,false表示按照FIFO方式淘汰。

另外还有一个方法控制是否删除最旧的数据:

    protected boolean removeEldestEntry(Map.Entry<K,V> eldest) {
return false;
} //put新数据的时候,检查是否需要删除最旧的数据
void addEntry(int hash, K key, V value, int bucketIndex) {
super.addEntry(hash, key, value, bucketIndex); // Remove eldest entry if instructed
Entry<K,V> eldest = header.after;
if (removeEldestEntry(eldest)) {
removeEntryForKey(eldest.key);
}
}

使用LinkedHashMap实现LRUCache:

public class LinkedHashMapLRUSample<K, V> extends LinkedHashMap<K, V>{
private int capacity;
public LinkedHashMapLRUSample(){}
public LinkedHashMapLRUSample(int capacity){
super(16, 0.75f, true);
this.capacity = capacity;
} @Override
protected boolean removeEldestEntry(Map.Entry<K, V> eldest) {
return this.size() > capacity;
} public static void main(String[] args) {
LinkedHashMapLRUSample<Integer, Integer> sample = new LinkedHashMapLRUSample<Integer, Integer>(2);
Assert.check(sample.get(2) == null);
sample.put(2,1);
sample.put(2, 2);
Assert.check(sample.get(2).intValue() == 2);
sample.put(1, 3);
Assert.check(sample.get(1) == 3);
Assert.check(sample.get(2).intValue() == 2); sample.put(3, 3);
Assert.check(sample.get(1) == null);
}
}

参考

缓存算法和实现 : 对各种缓存算法做了说明。

LRU算法机器变种

LRU Cache java实现的更多相关文章

  1. LeetCode – LRU Cache (Java)

    Problem Design and implement a data structure for Least Recently Used (LRU) cache. It should support ...

  2. leetcode 146. LRU Cache ----- java

    esign and implement a data structure for Least Recently Used (LRU) cache. It should support the foll ...

  3. lru cache java

    http://www.acmerblog.com/leetcode-lru-cache-lru-5745.html acm之家的讲解是在是好,丰富 import java.util.LinkedHas ...

  4. Java for LeetCode 146 LRU Cache 【HARD】

    Design and implement a data structure for Least Recently Used (LRU) cache. It should support the fol ...

  5. LRU Cache leetcode java

    题目: Design and implement a data structure for Least Recently Used (LRU) cache. It should support the ...

  6. java基于Hash表和双向链表简单实现LRU Cache

    package lru; import java.util.HashMap; public class LRUCache2<K,V> { public final int capacity ...

  7. LeetCode——LRU Cache

    Description: Design and implement a data structure for Least Recently Used (LRU) cache. It should su ...

  8. LeetCode之LRU Cache 最近最少使用算法 缓存设计

    设计并实现最近最久未使用(Least Recently Used)缓存. 题目描述: Design and implement a data structure for Least Recently ...

  9. 146. LRU Cache

    题目: Design and implement a data structure for Least Recently Used (LRU) cache. It should support the ...

随机推荐

  1. 1675: [Usaco2005 Feb]Rigging the Bovine Election 竞选划区(题解第二弹)

    1675: [Usaco2005 Feb]Rigging the Bovine Election 竞选划区 Time Limit: 5 Sec  Memory Limit: 64 MBSubmit:  ...

  2. 在LaTeX 与 LyX 中设置“Contents”为“目录”

    在 LaTeX 中,目录一般被显示为英文"Contents",因此需要设置成"目录". 通常在 Preamble 按照如下方式设置: \renewcommand ...

  3. gitoschina使用入门

    1 下载git sudo apt-get install git 2 添加公钥:terminal:  ssh-keygen -t rsa -C "git.oschina.net" ...

  4. 完全关闭IIS日志,包括System32下的LogFile

    早上突然发现网站访问不了了,登陆服务器一看,是C盘满了. 查一看,是IIS产生了70多G的日志,但明明已关闭日志了,还是会产生. 产生的目录在:C:\Windows\System32\LogFiles ...

  5. MFC画笔作用域的问题

    今天发现了程序中的一个BUG.功能是在鼠标经过图形时,对图形进行加粗重绘.默认使用白色画刷.为防止白色背景下看不清,在白色背景下改用黑色画刷.代码如下 CPen* pOldPen;if (pDC-&g ...

  6. Ef+T4模板实现代码快速生成器

    转载请注明地址:http://www.cnblogs.com/cainiaodage/p/4953601.html 效果如图,demo(点击demo可下载案例) 项目结构如图 T4BLL添加BLL.t ...

  7. java数组、java.lang.String、java.util.Arrays、java.lang.Object的toString()方法和equals()方法详解

    public class Test { public static void main(String[] args) { int[] a = {1, 2, 4, 6}; int[] b = a; in ...

  8. JSTL标签用法 详解(转)

    JSTL 核心标签库标签共有13个,功能上分为4类: 1.表达式控制标签:out.set.remove.catch 2.流程控制标签:if.choose.when.otherwise 3.循环标签:f ...

  9. 关于SQL的一些小知识

    在代码中调用存储过程的时,必须先测试存储过程,存储过程测试成功之后再去java中去调用!!@!@#!@!@! 以后自己写的存储过程写一个本地保存一个.!~~~!!(这个很关键) 以后在代码中的SQL都 ...

  10. pl sql 查询显示乱码解决方法——设置环境变量NLS_LANG

    用oracle进行查询的时候,有的时候会出现查询结果为乱码的情况,此时要设置一个环境变量NLS_LANG. 此变量的值如何获得呢?运行下面sql语句就可以获得: select userenv('lan ...