1/先解释下CNN的过程:

首先对一张图片进行卷积,可以有多个卷积核,卷积过后,对每一卷积核对应一个chanel,也就是一张新的图片,图片尺寸可能会变小也可能会不变,然后对这个chanel进行一些pooling操作。

最后pooling输出完成,这个算作一个卷积层。

最后对最后一个pooling结果进行一个简单的MLP的判别其就好了

2.代码分步:

2.1 W and bias:注意不要将一些W设为0,一定要注意,这个会在后面一些地方讲到

 #注意不要将一些W设为0,一定要注意,这个会在后面一些地方讲到
def getWeights(shape):
return tf.Variable(tf.truncated_normal(shape,stddev= 0.1))
def getBias(shape):
return tf.Variable(tf.constant(0.1))

2.2 卷积层操作:

首先说下tf.nn.conv2d这个函数:

其中官方解释:

这里主要需要了解的是strides的含义:其shape表示的是[batch, in_height, in_width, in_channels]。需要注意的是,看我们在Weights初始化时的shape,我们自己定义的shape格式是[h,w,inchanel,outchanel]   --->chanel也就是我们理解的厚度。

 def conv2d(x,W):
return tf.nn.conv2d(x,W,strides = [1,1,1,1],padding="SAME")
#ksize
def maxpooling(x):
return tf.nn.max_pool(x,ksize=[1,2,2,1],strides = [1,2,2,1],padding= "SAME")

关于data_format

padding也有两种方式:

其他地方其实也没有什么新操作所有代码在下面:

 # -*- coding: utf-8 -*-
"""
Spyder Editor This is a temporary script file.
"""
from tensorflow.examples.tutorials.mnist import input_data
import tensorflow as tf
import numpy as np
#注意不要将一些W设为0,一定要注意,这个会在后面一些地方讲到
def getWeights(shape):
return tf.Variable(tf.truncated_normal(shape,stddev= 0.1))
def getBias(shape):
return tf.Variable(tf.constant(0.1))
#构造卷积层 strides前一个跟最后后一个为1,其他表示方向,padding一般是有两种方式 ,一个是SAME还有一个是VALID
#前者卷积后不改变大小后一个卷积后一般会变小
#strides--->data_format:data_format: An optional string from: "NHWC", "NCHW". Defaults to "NHWC". Specify the data format of the input and output data. With the default format "NHWC", the data is stored in the order of: [batch, height, width, channels]. Alternatively, the format could be "NCHW", the data storage order of: [batch, channels, height, width].
#
def conv2d(x,W):
return tf.nn.conv2d(x,W,strides = [1,1,1,1],padding="SAME")
#ksize
def maxpooling(x):
return tf.nn.max_pool(x,ksize=[1,2,2,1],strides = [1,2,2,1],padding= "SAME")
def compute_acc(v_xs,v_ys):
global predict
y_pre = sess.run(predict,feed_dict = {xs:v_xs,keep_prob:1})
tmp = tf.equal(tf.arg_max(y_pre,1),tf.arg_max(v_ys,1))
accuracy = tf.reduce_mean(tf.cast(tmp,tf.float32))
return sess.run(accuracy,feed_dict = {xs:v_xs,ys:v_ys,keep_prob:1}) mnist = input_data.read_data_sets("MNIST_data",one_hot=True)
xs = tf.placeholder(tf.float32,[None,28*28])
ys = tf.placeholder(tf.float32,[None,10])
keep_prob = tf.placeholder(tf.float32) x_images = tf.reshape(xs,[-1,28,28,1]) W_c1 = getWeights([5,5,1,32])
b_c1 = getBias([32])
h_c1 = tf.nn.relu(conv2d(x_images,W_c1)+b_c1)
h_p1 = maxpooling(h_c1) W_c2 = getWeights([5,5,32,64])
b_c2 = getBias([64])
h_c2 = tf.nn.relu(conv2d(h_p1,W_c2)+b_c2)
h_p2 = maxpooling(h_c2) W_fc1 = getWeights([7*7*64,1024])
b_fc1 = getBias([1024])
h_flat = tf.reshape(h_p2,[-1,7*7*64])
h_fc1 = tf.nn.relu(tf.matmul(h_flat,W_fc1)+b_fc1)
h_fc1_drop = tf.nn.dropout(h_fc1,keep_prob) W_fc2 = getWeights([1024,10])
b_fc2 = getBias([10])
predict = tf.nn.softmax(tf.matmul(h_fc1_drop,W_fc2)+b_fc2) loss = tf.reduce_mean(-tf.reduce_sum(ys*tf.log(predict),
reduction_indices=[1]))
train_step = tf.train.AdamOptimizer(0.001).minimize(loss) sess = tf.Session()
sess.run(tf.initialize_all_variables())
for i in range(1000):
batch_xs, batch_ys = mnist.train.next_batch(100)
sess.run(train_step, feed_dict={xs: batch_xs, ys: batch_ys, keep_prob: 0.5})
if i % 50 == 0:
print (compute_acc(mnist.test.images,mnist.test.labels))

需要注意的是nn.dropout()

TFboy养成记 CNN的更多相关文章

  1. TFBOY 养成记 一些比较好多文章。

    API解释中文版(简书文章,没事看看): http://www.jianshu.com/p/e3a79eac554f Tensorlfow op辨异:tf.add()与tf.nn.bias_add() ...

  2. TFboy养成记 MNIST Classification (主要是如何计算accuracy)

    参考:莫烦. 主要是运用的MLP.另外这里用到的是批训练: 这个代码很简单,跟上次的基本没有什么区别. 这里的lossfunction用到的是是交叉熵cross_entropy.可能网上很多形式跟这里 ...

  3. TFboy养成记 tf.cast,tf.argmax,tf.reduce_sum

    referrence: 莫烦视频 先介绍几个函数 1.tf.cast() 英文解释: 也就是说cast的直译,类似于映射,映射到一个你制定的类型. 2.tf.argmax 原型: 含义:返回最大值所在 ...

  4. TFboy养成记 tensorboard

    首先介绍几个用法: with tf.name_scope(name = "inputs"): 这个是用于区分区域的.如,train,inputs等. xs = tf.placeho ...

  5. TFboy养成记 多层感知器 MLP

    内容总结与莫烦的视频. 这里多层感知器代码写的是一个简单的三层神经网络,输入层,隐藏层,输出层.代码的目的是你和一个二次曲线.同时,为了保证数据的自然,添加了mean为0,steddv为0.05的噪声 ...

  6. TFboy养成记 tensor shape到底怎么说

    tensor.shape 对于一位向量,其形式为[x,] 对于矩阵,二维矩阵[x,y],三维矩阵[x,y,z] 对于标量,也就是0.3*x这种0.3,表示形式为() 如果说这个矩阵是三维的,你想获得其 ...

  7. TFboy养成记 简单小程序(Variable & placeholder)

    学习参考周莫烦的视频. Variable:主要是用于训练变量之类的.比如我们经常使用的网络权重,偏置. 值得注意的是Variable在声明是必须赋予初始值.在训练过程中该值很可能会进行不断的加减操作变 ...

  8. TFboy养成记

    转自:http://www.cnblogs.com/likethanlove/p/6547405.html 在tensorflow的使用中,经常会使用tf.reduce_mean,tf.reduce_ ...

  9. 2016级算法第六次上机-F.AlvinZH的学霸养成记VI

    1082 AlvinZH的学霸养成记VI 思路 难题,凸包. 分析问题,平面上给出两类点,问能否用一条直线将二者分离. 首先应该联想到这是一个凸包问题,分别计算两类点的凸包,如果存在符合题意的直线,那 ...

随机推荐

  1. WinForm程序的发布

  2. 阿里巴巴Java开发规约插件p3c详细教程及使用感受

    阿里巴巴Java开发手册 在进入正题介绍这款插件之前,首先来谈一下<阿里巴巴Java开发手册>,2017年年初,首次公开的阿里官方Java代码规范标准手册可以说是引起了全民(IT界)代码规 ...

  3. Centos 7.3 安装配置 PostgreSQL 9.x

    一.安装 PostgresSQL Centos 7 自带的 PostgresSQL 是 9.2 版的.因为,yum 已经做了国内源,速度飞快,所以直接就用 yum 安装了.依次执行以下命令即可,非常简 ...

  4. python Logging的使用

    日志是用来记录程序在运行过程中发生的状况,在程序开发过程中添加日志模块能够帮助我们了解程序运行过程中发生了哪些事件,这些事件也有轻重之分. 根据事件的轻重可分为以下几个级别: DEBUG: 详细信息, ...

  5. 在C#中winform程序中应用nlog日志工具

    在C#中winform程序中应用nlog日志工具,配置文件简单应用. 文件名 nlog.config,请注意修改属性为"始终复制",发布时候容易遇到不存在文件的错误提示. 通过Nu ...

  6. java springmvc+bui+bootstrap后台管理系统搭建

    先来说说bui,这个框架是阿里巴巴的一个前端团队研发的,能够用很少的代码快速搭建一个后台管理系统,很适做管理平台的开发, 之前用过类似这样的框架extjs,做个比较,这个框架实现功能比extjs的代码 ...

  7. IntentService学习

    IntentService是一个Service,主要就是Service和HandlerThread的结合 一.使用 不用多说和使用Service差不多,但是比Service多个一个方法实现: publ ...

  8. Spring-SpringMVC-Mybatis整合的步骤

    1.导入jar包 1.1  spring面向切面jar包 com.springsource.net.sf.cglib-2.2.0.jar com.springsource.org.aopallianc ...

  9. 初探 ELK - 每天5分钟玩转 Docker 容器技术(89)

    在开源的日志管理方案中,最出名的莫过于 ELK 了.ELK 是三个软件的合称:Elasticsearch.Logstash.Kibana. Elasticsearch一个近乎实时查询的全文搜索引擎.E ...

  10. HTML中引入CSS的方法

    在HTML中引入CSS的方法主要有四种,它们分别是行内式.内嵌式.链接式和导入式. 1.行内式 行内式是在标记的style属性中设定CSS样式.这种方式没有体现出CSS的优势,不推荐使用. 2.内嵌式 ...