题目的大意就是求等差数列对应的Fibonacci数值的和,容易知道Fibonacci对应的矩阵为[1,1,1,0],因为题目中f[0]=0,f[1]=1,所以推出最后结果f[n]=(A^n-1).a,所以 f(g(i))= f(k*i+b)= (A^(k*i+b-1)).a,i从 0取到 n-1,取出公因式 A^(b-1)(因为矩阵满足分配率),然后所求结果可化为 A^(b-1) * (A^0 + A^k + A^2k +....+ A^(n-1)k),化到这里后难点就是求和了,一开始我尝试暴力求和(每个A^k可以用快速幂求出,logn级别),即O(n)的做法,结果TLE了,预料之中,这时我竟傻乎乎地套用等比数列求和公式,即(A^nk -A^0) /(A^k -E),按比例放大再相减是没错,问题是不是简单的相除……总之思路应该是错的了,后来看别人的博客后才知道原来可以用二分来求和的,即 A^0 + A^k + A^2k +....+ A^(n-1)k = (A^0 + A^k + A^2k +...+ A^(n/2-1)k) *(E + A^(n/2)k),递归来求和,处理好 n的奇偶性即可,但我还是调试了好久,就因为在一些细节问题上出错却检查不出来,下面附上代码:

 #include<cstdio>
#include<cstring>
#include<cstdlib>
using namespace std;
typedef long long LL;
LL mod= ; //初不初始化都没问题,只是为了防止忘记读入时产生的异常退出 struct matrix{
LL a,b,c,d;
matrix(LL a=, LL b=, LL c=, LL d=): a(a),b(b),c(c),d(d) {}
matrix operator +(const matrix &m2){
return matrix((a+m2.a)%mod,(b+m2.b)%mod,(c+m2.c)%mod,(d+m2.d)%mod);
}
matrix operator *(const matrix &m2){
return matrix((a*m2.a%mod+b*m2.c%mod)%mod, (a*m2.b%mod+b*m2.d%mod)%mod, (c*m2.a%mod+d*m2.c%mod)%mod, (c*m2.b%mod+d*m2.d%mod)%mod);
}
//一开始等比数列求和的思路要用到除法,后来才发现是错的,不过也不删了,就放在这吧
matrix operator /(const matrix &m2){
//二维求逆很好求的
matrix inv= matrix(m2.d,-m2.b,-m2.c,m2.a);
LL tmp= m2.a*m2.d-m2.b*m2.c;
return matrix((a*inv.a/tmp%mod+b*inv.c/tmp%mod)%mod, (a*inv.b/tmp%mod+b*inv.d/tmp%mod)%mod, (c*inv.a/tmp%mod+d*inv.c/tmp%mod)%mod, (c*inv.b/tmp%mod+d*inv.d/tmp%mod)%mod);
}
};
// A为 Fibonacci矩阵,E为单位矩阵,设为全局变量更方便一些
matrix A(,,,),E(,,,); //简单的快速幂
matrix quick_mod(matrix m, LL b){
if(b==-) return matrix(,,,-);
//若指数为-1,返回矩阵 A^-1,相当于A^1的逆(算了好久T.T)
matrix res(E); //res一开始为单位矩阵
while(b){
if(b&) res= res*m;
m= m*m;
b>>=;
}
return res;
} //二分法计算 A^0 + A^k + A^2k +....+ A^(n-1)k 的和
//即 sum =(A^0 + A^k + A^2k +...+ A^(n/2-1)k) *(E + A^(n/2)k),分治的思想
matrix quick_sum(LL k, LL n){
if(n==) return E; //若 n为1,即计算 A^0,此时返回的是 E!而不是 A!一开始没想到错在这里,卡了好久 T.T
if(n%==) return quick_sum(k,n/)*(E+quick_mod(A,(n/)*k));
//else return quick_sum(k,(n-1)/2)*(E+quick_mod(A,((n-1)/2)*k))*quick_mod(A,(n-1)*k);
else return quick_sum(k,n-) + quick_mod(A,(n-)*k);
//这样的写法比起上一行的虽然会多一次调用函数的开销,但可读性增强,代码逻辑更清晰
} int main()
{
//freopen("1588in.txt","r",stdin);
LL k,b,n;
while(~scanf("%I64d%I64d%I64d%I64d",&k,&b,&n,&mod)){
//最后的结果就是 A^b-1 *(A0 + A^k + A^2k +...+ A(n-1)k) 的 a
matrix ans= quick_mod(A,b-) * quick_sum(k,n);
printf("%I64d\n",ans.a);
}
return ;
}

hdu 1588(Fibonacci矩阵求和)的更多相关文章

  1. HDU 1588 Gauss Fibonacci(矩阵高速幂+二分等比序列求和)

    HDU 1588 Gauss Fibonacci(矩阵高速幂+二分等比序列求和) ACM 题目地址:HDU 1588 Gauss Fibonacci 题意:  g(i)=k*i+b;i为变量.  给出 ...

  2. HDU 1588 Gauss Fibonacci(矩阵快速幂)

    Gauss Fibonacci Time Limit: 3000/1000 MS (Java/Others)     Memory Limit: 32768/32768 K (Java/Others) ...

  3. HDU 3117 Fibonacci Numbers(围绕四个租赁斐波那契,通过计++乘坐高速动力矩阵)

    HDU 3117 Fibonacci Numbers(斐波那契前后四位,打表+取对+矩阵高速幂) ACM 题目地址:HDU 3117 Fibonacci Numbers 题意:  求第n个斐波那契数的 ...

  4. hdu 3117 Fibonacci Numbers 矩阵快速幂+公式

    斐波那契数列后四位可以用快速幂取模(模10000)算出.前四位要用公式推 HDU 3117 Fibonacci Numbers(矩阵快速幂+公式) f(n)=(((1+√5)/2)^n+((1-√5) ...

  5. poj 1195:Mobile phones(二维树状数组,矩阵求和)

    Mobile phones Time Limit: 5000MS   Memory Limit: 65536K Total Submissions: 14489   Accepted: 6735 De ...

  6. poj 1195:Mobile phones(二维线段树,矩阵求和)

    Mobile phones Time Limit: 5000MS   Memory Limit: 65536K Total Submissions: 14391   Accepted: 6685 De ...

  7. UVA 11149-Power of Matrix(等比矩阵求和)

    给定一个矩阵A 要求A + A^2 + A^3 +…. A^k: 对于到n的等比矩阵求和 如果n是偶数:  如果n是奇数:  #include<stdio.h> #include<s ...

  8. BZOJ3286 Fibonacci矩阵 矩阵 快速幂 卡常

    欢迎访问~原文出处——博客园-zhouzhendong 去博客园看该题解 题目传送门 - BZOJ3286 题意概括 n,m,a,b,c,d,e,f<=10^1000000 题解 神奇的卡常题目 ...

  9. BZOJ 2901: 矩阵求和

    2901: 矩阵求和 Time Limit: 20 Sec  Memory Limit: 256 MBSubmit: 411  Solved: 216[Submit][Status][Discuss] ...

随机推荐

  1. protoful进行序列化

    Protocol Buffers 是一种轻便高效的结构化数据存储格式,可以用于结构化数据串行化,或者说序列化.它很适合做数据存储或 RPC 数据交换格式.可用于通讯协议.数据存储等领域的语言无关.平台 ...

  2. 错误Mybatis 元素类型为 "resultMap" 的内容必须匹配 "(constructor?,id*,result*,association*,collection*,discriminat

    今天算是见识了什么事顺序的重要性. 在使用mybatis时由于联合了其他的表,用到了resultMap,之后外加association这一项.可是在替换对应字段的位置上加上association总是报 ...

  3. c#多播委托

    using System; using System.Collections.Generic; using System.Linq; using System.Text; namespace Cons ...

  4. Sublime Text2一些快捷键收藏

    快捷键 XP版 Ctrl+P           搜索文件                           Ctrl+R          搜索方法                        ...

  5. jsp:和属性相关的方法,请求的转发,重定向

    jsp中与属性相关的方法: 方法: void setAttribute(String name, Object o): 设置属性 Object getAttribute(String name):获取 ...

  6. hasOwnproperty详细总结

    hasOwnProperty:是用来判断一个对象是否有你给出名称的属性或对象.不过需要注意的是,此方法无法检查该对象的原型链中是否具有该属性,该属性必须是对象本身的一个成员. isPrototypeO ...

  7. 编译ITK

    [2016年7月4周]编译ITK 1.下载必备文件 InsightToolkit-4.8.1.cmake 2.cmake编译 修改CMAKE_INSTALL_PREFIX配置到需要生成的目录下面去. ...

  8. C语言typeof详解 offsetof

    http://blog.chinaunix.net/uid-28458801-id-4200573.html 前言:    typeof关键字是C语言中的一个新扩展,这个特性在linux内核中应用非常 ...

  9. select resharper shortcuts scheme

    VS代码生成工具ReSharper提供了丰富的快捷键,可以极大地提高你的开发效率.安装ReSharper后首次启动Visual Studio时,会出现一个名为ReSharper Keyboard Sc ...

  10. 编写shell管理脚本(一)

    7.1  查看当前linux系统中能够使用的shell程序的列表[root@localhost ~]# cat /etc/shells/bin/sh/bin/bash/sbin/nologin/bin ...