Description

In graph theory, a pseudoforest is an undirected graph in which every connected component has at most one cycle. The maximal pseudoforests of G are the pseudoforest subgraphs of G that are not contained within any larger pseudoforest of G. A pesudoforest is larger than another if and only if the total value of the edges is greater than another one’s.

 

Input

The input consists of multiple test cases. The first line of each test case contains two integers, n(0 < n <= 10000), m(0 <= m <= 100000), which are the number of the vertexes and the number of the edges. The next m lines, each line consists of three integers, u, v, c, which means there is an edge with value c (0 < c <= 10000) between u and v. You can assume that there are no loop and no multiple edges. 
The last test case is followed by a line containing two zeros, which means the end of the input. 
 

Output

Output the sum of the value of the edges of the maximum pesudoforest. 
 

Sample Input

3 3
0 1 1
1 2 1
2 0 1
4 5
0 1 1
1 2 1
2 3 1
3 0 1
0 2 2
0 0
 

Sample Output

3
5
 
说说题目意思是必要的,毕竟小笼包都给我解释了好久,真是难以让人理解,题目意思就是合并出一个假森林出来,这个森林的环只能有一个,所谓环就是比如当0, 1, 2建立集合关系的时候
这个时候2已经链接到0了,也就是说0是可以到2的,这个时候如果系统在给你一组数据类似于2, 0的时候,继续合并,则0到1到2再到0,把它想成一圈,是不是就是一个环了,好了,理解这里应该就没有什么难度了,接下来的主要问题就是合并时的判断了,当两个节点同属于一个集合的时候,看看这个集合已经形成环了没有,如果形成了,就不能加入了,反之则可以,还有一种情况就是
两个节点分别属于不同的集合,因为合并的时候要考虑环的数量,所以当两个集合合并后新集合的环数量超过1也是不行的,还有一些问题我会在注释中注明:
 
#include<cstdio>
#include<cstring>
#include<queue>
#include<cmath>
#include<algorithm>
#include<string>
#include<iostream>
using namespace std; const int MX = 111111;
int road[MX];
int sign[MX];
int rec[MX];
int n, m; struct Node {
int a, b, c;
}node[MX]; bool comp(const Node& n1, const Node& n2) {
return n1.c > n2.c;//对价值进行排序,优先考虑放大的,贪心啦
} void ini() {
for (int i = 0; i < n; i++) {
road[i] = i;
sign[i] = 0;//注意这个是用来标记环的数量的
rec[i] = 1;//注意这个是用来标记集合中的元素个数的,因为我采用了新的合并方法,就是把小集合合并到大集合,当然你也不用在意这种细节啦,你可以继续使用自己的合并方式
}
} int FindRoot(int r) {//在使用路径压缩查找跟节点的时候我没有使用递归了,主要是不好进行各种标记
int root = r;
while (road[root] != root) root = road[root]; int t1 = r;
int t2 = r;
while (road[t1] != root) {
t2 = road[t1];
road[t1] = root;
sign[t1] = sign[root];
t1 = t2;
}
return root;
} int UnionRoot(int root1, int root2) {//基本的合并,一看就懂啦,看不懂就继续看- -
if (rec[root1] >= rec[root2]) {
road[root2] = root1;
rec[root1]++;
return root1;
} else {
road[root1] = root2;
rec[root2]++;
return root2;
}
} int main()
{
//freopen("input.txt", "r", stdin);
while (scanf("%d%d", &n, &m), n || m) {
ini();
for (int i = 0; i < m; i++) {
scanf("%d%d%d", &node[i].a, &node[i].b, &node[i].c);
}
sort(node, node + m, comp);//基本的贪心思想
int ans = 0;
for (int i = 0; i < m; i++) {
int root1 = FindRoot(node[i].a);
int root2 = FindRoot(node[i].b);
if (root1 == root2 && sign[root1] == 0) {//当两个节点同属于一个集合的时候,看看这个集合已经形成环了没有,如果形成了,就不能加入了,反之则可以
ans += node[i].c;
sign[root1] = 1;
} else {
if (sign[root1] != 1 || sign[root2] != 1) {//两个节点分别属于不同的集合,因为合并的时候要考虑环的数量,所以当两个集合合并后新集合的环数量超过1也是不行的
ans += node[i].c;
int r = UnionRoot(root1, root2);
if (sign[root1] == 1 || sign[root2] == 1) {
sign[r] = 1;
}
}
}
}
printf("%d\n", ans);
}
return 0;
}
 
 
 
 
 

HDU - Pseudoforest的更多相关文章

  1. hdu 3367(Pseudoforest ) (最大生成树)

    Pseudoforest Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)Tot ...

  2. hdu 3367 Pseudoforest (最大生成树 最多存在一个环)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=3367 Pseudoforest Time Limit: 10000/5000 MS (Java/Oth ...

  3. hdu 3367 Pseudoforest(最大生成树)

    Pseudoforest Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others) To ...

  4. hdu 3367 Pseudoforest

    Pseudoforest Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others) To ...

  5. hdu 3367 Pseudoforest (最小生成树)

    Pseudoforest Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)Tot ...

  6. HDU 3367 Pseudoforest(Kruskal)

    Pseudoforest Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others) To ...

  7. hdu 3367 Pseudoforest(并查集)

    题意:有一种叫作Pseudoforest的结构,表示在无向图上,每一个块中选取至多包含一个环的边的集合,又称“伪森林”.问这个集合中的所有边权之和最大是多少? 分析:如果没有环,那么构造的就是最大生成 ...

  8. hdu 3367 Pseudoforest 最大生成树★

    #include <cstdio> #include <cstring> #include <vector> #include <algorithm> ...

  9. 【转载】图论 500题——主要为hdu/poj/zoj

    转自——http://blog.csdn.net/qwe20060514/article/details/8112550 =============================以下是最小生成树+并 ...

随机推荐

  1. How to increase TX Power Signal Strength of WiFi

    转自:https://www.blackmoreops.com/2013/10/27/how-to-increase-tx-power-signal-strength-of-wifi/ This gu ...

  2. maven File encoding has not been set

    原pom.xml配置文件: <?xml version="1.0" encoding="UTF-8"?> <project xmlns=&qu ...

  3. AOP常用术语

    1.连接点(Joinpoint) 程序执行的某个特定位置:如类开始初始化前,类初始化后,类某个方法调用前,调用后,方法跑出异常后.一个类或一段程序代码拥有一些具有边界性质的特定点.这些代码中的特定点就 ...

  4. Centos6.5里安装Hbase(伪分布式)

    首先我们到官方网站下载Hbase,而我使用的版本是hbase-0.94.27.tar.gz 解压下来: tar zxvf hbase-.tar.gz 寻找java安装路径 [root@localhos ...

  5. less 入门1

    less 入门1 less.html <!DOCTYPE html> <html lang="zh-cn"> <head > <meta ...

  6. hdu 4044 2011北京赛区网络赛E 树形dp ****

    专题训练 #include<stdio.h> #include<iostream> #include<string.h> #include<algorithm ...

  7. [SQL]查询及删除重复记录的SQL语句

    一:查询及删除重复记录的SQL语句1.查找表中多余的重复记录,重复记录是根据单个字段(peopleId)来判断select * from peoplewhere peopleId in (select ...

  8. 转一篇dudu大人的文章:程序员,用NuGet管理好你的包包

    每个女人都有很多包包:其实男人也有,但只有会写程序的男人才有 —— 代码世界中的大“包”小“包”.这些大包小包,有花钱买的,有从开源市场淘的,也有自己或同事亲手制作的. 包包有个特点:容易坏,更新快, ...

  9. Hbase原理、基本概念、基本架构

    来源:http://blog.csdn.net/woshiwanxin102213/article/details/17584043 概述 HBase是一个构建在HDFS上的分布式列存储系统:HBas ...

  10. hdu 1203 概率+01背包

    I NEED A OFFER! Time Limit:1000MS     Memory Limit:32768KB     64bit IO Format:%I64d & %I64u Sub ...