INSTRUCTION EXECUTION CHARACTERISTICS
Characteristics of Some CISCs, RISCs, and Superscalar Processors
One of the most visible forms of evolution associated with computers is that of pro-
gramming languages. As the cost of hardware has dropped, the relative cost of soft-
ware has risen. Along with that, a chronic shortage of programmers has driven up
software costs in absolute terms. Thus, the major cost in the life cycle of a system is
software, not hardware. Adding to the cost, and to the inconvenience, is the element
of unreliability: it is common for programs, both system and application, to continue
to exhibit new bugs after years of operation.
The response from researchers and industry has been to develop ever more
powerful and complex high-level programming languages. These high-level lan-
guages (HLLs): (1) allow the programmer to express algorithms more concisely,
(2) allow the compiler to take care of details that are not important in the program-
mer’s expression of algorithms, and (3) often support naturally the use of structured
programming and/or object-oriented design.
Alas, this solution gave rise to a perceived problem, known as the semantic
gap, the difference between the operations provided in HLLs and those provided
in computer architecture. Symptoms of this gap are alleged to include execution
inefficiency, excessive machine program size, and compiler complexity. Designers
responded with architectures intended to close this gap. Key features include large
instruction sets, dozens of addressing modes, and various HLL statements imple-
mented in hardware. An example of the latter is the CASE machine instruction on
the VAX. Such complex instruction sets are intended to
• Ease the task of the compiler writer.
• Improve execution efficiency, because complex sequences of operations can
be implemented in microcode.
• Provide support for even more complex and sophisticated HLLs.
Meanwhile, a number of studies have been done over the years to determine
the characteristics and patterns of execution of machine instructions generated
from HLL programs. The results of these studies inspired some researchers to look
for a different approach: namely, to make the architecture that supports the HLL
simpler, rather than more complex.
To understand the line of reasoning of the RISC advocates, we begin with a
brief review of instruction execution characteristics. The aspects of computation of
interest are as follows:
• Operations performed: These determine the functions to be performed by the
processor and its interaction with memory.
• Operands used: The types of operands and the frequency of their use deter-
mine the memory organization for storing them and the addressing modes for
accessing them.
• Execution sequencing: This determines the control and pipeline organization.
In the remainder of this section, we summarize the results of a number of
studies of high-level-language programs. All of the results are based on dynamic
measurements. That is, measurements are collected by executing the program and
counting the number of times some feature has appeared or a particular property
has held true. In contrast, static measurements merely perform these counts on the
source text of a program. They give no useful information on performance, because
they are not weighted relative to the number of times each statement is executed.
INSTRUCTION EXECUTION CHARACTERISTICS的更多相关文章
- Next Instruction Access Intent Instruction
Executing a Next Instruction Access Intent instruction by a computer. The processor obtains an acces ...
- Adaptively handling remote atomic execution based upon contention prediction
In one embodiment, a method includes receiving an instruction for decoding in a processor core and d ...
- Method and apparatus for transitioning between instruction sets in a processor
A data processor (104) is described. The data processor (104) is capable of decoding and executing a ...
- smaller programs should improve performance
COMPUTER ORGANIZATION AND ARCHITECTURE DESIGNING FOR PERFORMANCE NINTH EDITION In this section, we l ...
- Notes of Principles of Parallel Programming - TODO
0.1 TopicNotes of Lin C., Snyder L.. Principles of Parallel Programming. Beijing: China Machine Pres ...
- Low-overhead enhancement of reliability of journaled file system using solid state storage and de-duplication
A mechanism is provided in a data processing system for reliable asynchronous solid-state device bas ...
- Optimizing subroutine calls based on architecture level of called subroutine
A technique is provided for generating stubs. A processing circuit receives a call to a called funct ...
- Speculative store buffer
A speculative store buffer is speculatively updated in response to speculative store memory operatio ...
- A multiprocessing system including an apparatus for optimizing spin-lock operations
A multiprocessing system having a plurality of processing nodes interconnected by an interconnect ne ...
随机推荐
- iOS Aspect Fit,Aspect Fill,Scale To Fill
Scale:拉伸图片,图片变形. Aspect:图片长宽的保持比例,图片不变形. Aspect Fill(常用):图像充满容器.以长宽中小的参数为限制. Aspect Fit:图像在容器中完整显示.以 ...
- POJ3368 Frequent values(RMQ线段树)
题目大概说给一个递增序列,询问区间出现最多的数. 用莫队算法比较直观,虽然应该会T..好像也可以主席树..不过题目给的序列是有序的,因而相同的数会聚在一起. 考虑把序列分成一段一段,使每段都包含极大的 ...
- hihoCoder#1384 : Genius ACM
对于一个固定的区间$[l,r]$,显然只要将里面的数字从小到大排序后将最小的$m$个和最大的$m$个配对即可. 如果固定左端点,那么随着右端点的右移,$SPD$值单调不降,所以尽量把右端点往右移,贪心 ...
- Codeforces Round #253 (Div. 2) A. Anton and Letters
题目很简单,只需要注意带空格的输入用getline即可 #include <iostream> #include <vector> #include <algorithm ...
- ACM 背包问题
背包问题 时间限制:3000 ms | 内存限制:65535 KB 难度:3 描述 现在有很多物品(它们是可以分割的),我们知道它们每个物品的单位重量的价值v和重量w(1<=v,w< ...
- [Leetcode] Subsets II
Given a collection of integers that might contain duplicates, S, return all possible subsets. Note: ...
- jQueryUI日期显示
<script type="text/javascript" src="js/My97DatePicker/WdatePicker.js">< ...
- 使用ajax和history.pushState无刷新改变页面URL
表现 如果你使用chrome或者firefox等浏览器访问本博客.github.com.plus.google.com等网站时,细心的你会发现页面之间的点击是通过ajax异步请求的,同时页面的URL发 ...
- 彻底弄明白之数据结构中的KMP算法
如何加速朴素查找算法? KMP,当然还有其他算法,后续介绍. Knuth–Morris–Pratt string search algorithm Start at LHS of strin ...
- CF 335B. Palindrome(DP)
题目链接 挺好玩的一个题,1Y... #include <cstdio> #include <cstring> #include <iostream> using ...