Description

Berland has n cities, the capital is located in city s, and the historic home town of the President is in city t (s ≠ t). The cities are connected by one-way roads, the travel time for each of the road is a positive integer.

Once a year the President visited his historic home town t, for which his motorcade passes along some path from s to t (he always returns on a personal plane). Since the president is a very busy man, he always chooses the path from s to t, along which he will travel the fastest.

The ministry of Roads and Railways wants to learn for each of the road: whether the President will definitely pass through it during his travels, and if not, whether it is possible to repair it so that it would definitely be included in the shortest path from the capital to the historic home town of the President. Obviously, the road can not be repaired so that the travel time on it was less than one. The ministry of Berland, like any other, is interested in maintaining the budget, so it wants to know the minimum cost of repairing the road. Also, it is very fond of accuracy, so it repairs the roads so that the travel time on them is always a positive integer.

Input

The first lines contain four integers nms and t (2 ≤ n ≤ 105; 1 ≤ m ≤ 105; 1 ≤ s, t ≤ n) — the number of cities and roads in Berland, the numbers of the capital and of the Presidents' home town (s ≠ t).

Next m lines contain the roads. Each road is given as a group of three integers ai, bi, li (1 ≤ ai, bi ≤ nai ≠ bi; 1 ≤ li ≤ 106) — the cities that are connected by the i-th road and the time needed to ride along it. The road is directed from city ai to city bi.

The cities are numbered from 1 to n. Each pair of cities can have multiple roads between them. It is guaranteed that there is a path from sto t along the roads.

Output

Print m lines. The i-th line should contain information about the i-th road (the roads are numbered in the order of appearance in the input).

If the president will definitely ride along it during his travels, the line must contain a single word "YES" (without the quotes).

Otherwise, if the i-th road can be repaired so that the travel time on it remains positive and then president will definitely ride along it, print space-separated word "CAN" (without the quotes), and the minimum cost of repairing.

If we can't make the road be such that president will definitely ride along it, print "NO" (without the quotes).

Examples
input
6 7 1 6
1 2 2
1 3 10
2 3 7
2 4 8
3 5 3
4 5 2
5 6 1
output
YES
CAN 2
CAN 1
CAN 1
CAN 1
CAN 1
YES
input
3 3 1 3
1 2 10
2 3 10
1 3 100
output
YES
YES
CAN 81
input
2 2 1 2
1 2 1
1 2 2
output
YES
NO
Note

The cost of repairing the road is the difference between the time needed to ride along it before and after the repairing.

In the first sample president initially may choose one of the two following ways for a ride:1 → 2 → 4 → 5 → 6 or 1 → 2 → 3 → 5 → 6.

dijkstra找出从s出发的最短路和从t出发的最短路。

存边的时候正向和逆向分别存起来,并且在求最短路的同时计算到每个点的最短路数量。

d[0][i]表示s出发到i的最短路,d[1][i]表示t出发到i的最短路。每条边的权值为w。

则当w+d[0][u]+d[1][v]时说明是s到t的最短路上的边,如果是所有最短路都经过的边,则满足path[0][u]*path[1][v]==path[0][t]。

path是最短路的数量,因为可能爆long long,因此要取模,而且还不能是1000000007。

 #include <iostream>
#include <cstdio>
#include <cstring>
#include <queue>
#include <algorithm>
#define N 100005
#define M 5462617
#define inf 0x3f3f3f3f3f3f3f3fll
#define ll long long
#define add(u,v,w) e[++cnt]=(edge){v,head[0][u],w};head[0][u]=cnt;e[++cnt]=(edge){u,head[1][v],w};head[1][v]=cnt
using namespace std;
struct edge{
ll to,next,w;
}e[N<<];
struct road{
ll u,v,w;
}l[N];
struct qnode{
ll v,c;
bool operator <(const qnode &r)const{
return c>r.c;
}
};
ll n,m,s,t,u,v,w,d[][N],cnt,head[][N],b[][N],path[][N];
void dijkstra(int f){
int i,j,k,pr=f?t:s;
for(i=;i<=n;i++)d[f][i]=inf;
priority_queue<qnode> q;
d[f][pr]=;
q.push((qnode){pr,});
path[f][pr]=;
while(!q.empty()){
qnode u=q.top();
q.pop();
if(b[f][u.v])continue;
b[f][pr=u.v]=;
for(j=head[f][pr];j;j=e[j].next){
k=e[j].to;
if(d[f][pr]+e[j].w==d[f][k])
path[f][k]=(path[f][k]+path[f][pr])%M;
else if(d[f][pr]+e[j].w<d[f][k]){
d[f][k]=d[f][pr]+e[j].w;
q.push((qnode){k,d[f][k]});
path[f][k]=path[f][pr];
}
}
}
}
int main() {
int i,j;
cin>>n>>m>>s>>t;
for(i=;i<=m;i++){
scanf("%lld%lld%lld",&u,&v,&w);
add(u,v,w);
l[i]=(road){u,v,w};
}
dijkstra();
dijkstra();
for(i=;i<=m;i++)
{
u=l[i].u;
v=l[i].v;
w=l[i].w;
if(d[][u]+d[][v]+w==d[][t]){
if(path[][u]*path[][v]%M==path[][t])
puts("YES");
else if(w>)
puts("CAN 1");
else puts("NO");
}
else if(d[][u]+d[][v]+<d[][t])
printf("CAN %lld\n",d[][u]+d[][v]+w-d[][t]+);
else
puts("NO");
}
}

  

【CodeForces 567E】President and Roads(最短路)的更多相关文章

  1. Codeforces.567E.President and Roads(最短路 Dijkstra)

    题目链接 \(Description\) 给定一张有向图,求哪些边一定在最短路上.对于不一定在最短路上的边,输出最少需要将其边权改变多少,才能使其一定在最短路上(边权必须为正,若仍不行输出NO). \ ...

  2. Codeforces Round #Pi (Div. 2) E. President and Roads 最短路+桥

    题目链接: http://codeforces.com/contest/567/problem/E 题意: 给你一个带重边的图,求三类边: 在最短路构成的DAG图中,哪些边是必须经过的: 其他的(包括 ...

  3. Codeforces Round #Pi (Div. 2) 567E President and Roads ( dfs and similar, graphs, hashing, shortest paths )

    图给得很良心,一个s到t的有向图,权值至少为1,求出最短路,如果是一定经过的边,输出"YES",如果可以通过修改权值,保证一定经过这条边,输出"CAN",并且输 ...

  4. Codeforces Gym 100338C Important Roads 最短路+Tarjan找桥

    原题链接:http://codeforces.com/gym/100338/attachments/download/2136/20062007-winter-petrozavodsk-camp-an ...

  5. cf567E. President and Roads(最短路计数)

    题意 题目链接 给出一张有向图,以及起点终点,判断每条边的状态: 是否一定在最短路上,是的话输出'YES' 如果不在最短路上,最少减去多少权值会使其在最短路上,如果减去后的权值\(< 1\),输 ...

  6. Codeforces Round #Pi (Div. 2) E. President and Roads tarjan+最短路

    E. President and RoadsTime Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://codeforces.com/contest/567 ...

  7. Codeforces 806 D.Prishable Roads

    Codeforces 806 D.Prishable Roads 题目大意:给出一张完全图,你需要选取其中的一些有向边,连成一个树形图,树形图中每个点的贡献是其到根节点路径上每一条边的边权最小值,现在 ...

  8. Codeforces 191C Fools and Roads(树链拆分)

    题目链接:Codeforces 191C Fools and Roads 题目大意:给定一个N节点的数.然后有M次操作,每次从u移动到v.问说每条边被移动过的次数. 解题思路:树链剖分维护边,用一个数 ...

  9. codeforces 689 Mike and Shortcuts(最短路)

    codeforces 689 Mike and Shortcuts(最短路) 原题 任意两点的距离是序号差,那么相邻点之间建边即可,同时加上题目提供的边 跑一遍dijkstra可得1点到每个点的最短路 ...

随机推荐

  1. matrix(No.1)operations

  2. webpack常用加载器和插件

    css文件加载器: style-loader,css-loader,sass-loader,less-loader //style和css加载器必须放在一起使用,且style必须放前面(style!c ...

  3. 小Y的棋盘问题 题解

    有一个n*m的棋盘,上面有一些棋子,每行每列最多只会有一个棋子,不会有两个棋子八连通.问随机一个空格子作为起点,再随机地选择一个空格子作为终点,求问不经过任意棋子最短路的期望长度是多少.多组,n,m& ...

  4. ICC的sacn-wise和unit-wise

    假设有16个被试,2个session,2个RUN,200个ROI,那么ICC需要对RUN1和RUN2分别算两次(相比而言,paired ttest则是对一个session中的RUN1和RUN2计算) ...

  5. 040医疗项目-模块四:采购单模块—采购单创建好之后跳转到采购单修改页面(editcgd.action)

    我们上一篇文章写到了要从editcgd.action为入口讲.我们要做的事根据edicgd.acion进入到Action层的一个函数,在这个函数里面要做的就是从数据库中把采购单表里面的数据都查出来显示 ...

  6. IE8中给HTML标签负值报错问题

    当通过JS给一个HTML标签设置高宽为负值的时候,会爆出一个“参数无效”的错误 chrome下不会报错,但是元素不会做任何关于负值的改变

  7. codevs2010 求后序遍历

    难度等级:白银 2010 求后序遍历 题目描述 Description 输入一棵二叉树的先序和中序遍历序列,输出其后序遍历序列. 输入描述 Input Description 共两行,第一行一个字符串 ...

  8. stm32调试记录一

    ..\..\SYSTEM\usart\usart.c(1): error:  #5: cannot open source input file "sys.h": No such ...

  9. matlab中的xcorr 自相关函数

    转载自 http://blog.163.com/to_be_myself/blog/static/176060227201101762159227/ Matlab中用于计算自相关函数的指令是xcorr ...

  10. C#之发送邮件汇总

    最近想搞个网站,其中找回密码用到了我们常见到的利用邮箱找回.利用邮箱的好处是可以有效确认修改密码者的身份. 百度了几篇博客,各有千秋.最终采用了QI Fei同志的博客,有Demo下载,看了看思路清晰, ...