Leetcode: Split Array Largest Sum
Given an array which consists of non-negative integers and an integer m, you can split the array into m non-empty continuous subarrays. Write an algorithm to minimize the largest sum among these m subarrays. Note: Given m satisfies the following constraint: 1 ≤ m ≤ length(nums) ≤ 14,000. Examples: Input: nums = [7,2,5,10,8] m = 2 Output: 18 Explanation: There are four ways to split nums into two subarrays. The best way is to split it into [7,2,5] and [10,8], where the largest sum among the two subarrays is only 18.
Binary Search Solution(+greedy) refer to https://discuss.leetcode.com/topic/61324/clear-explanation-8ms-binary-search-java
- The answer is between maximum value of input array numbers and sum of those numbers.
- Use binary search to approach the correct answer. We have
l = max number of array; r = sum of all numbers in the array;Every time we domid = (l + r) / 2; - Use greedy to narrow down left and right boundaries in binary search.
3.1 Cut the array from left.
3.2 Try our best to make sure that the sum of numbers between each two cuts (inclusive) is large enough but still less thanmid.
3.3 We'll end up with two results: either we can divide the array into more than m subarrays or we cannot.
If we can, it means that themidvalue we pick is too small because we've already tried our best to make sure each part holds as many non-negative numbers as we can but we still have numbers left. So, it is impossible to cut the array into m parts and make sure each parts is no larger thanmid. We should increase m. This leads tol = mid + 1;
If we can't, it is either we successfully divide the array into m parts and the sum of each part is less thanmid, or we used up all numbers before we reach m. Both of them mean that we should lowermidbecause we need to find the minimum one. This leads tor = mid - 1;
Have one question: since we are binary picking a number between Max(int[] input) and Sum(int[] input), how do we know that the number we end up with can actually be formed by summing some numbers from the input array?
I think the answer is yes we can be sure. Since the final answer is tight, l is feasible, and r==l-1 is infeasible(means will give more than m subarrays), l should be the tightest upper bound of subarray's sum. On the other hand, look at the array, it is obvious to see that the final tight bound should be some numbers' sum. Therefore, based on these two aspect, l should be some numbers' sum
public class Solution {
public int splitArray(int[] nums, int m) {
int max = 0; long sum = 0;
for (int num : nums) {
max = Math.max(num, max);
sum += num;
}
if (m == 1) return (int)sum;
//binary search
long l = max; long r = sum;
while (l <= r) {
long mid = (l + r)/ 2;
if (valid(mid, nums, m)) {
r = mid - 1;
} else {
l = mid + 1;
}
}
return (int)l;
}
public boolean valid(long target, int[] nums, int m) {
int count = 1; //nums of subarrays
long total = 0; //the sum of each subarray, if the sum exceed the threshold "target", has to get another subarray
for(int num : nums) {
total += num;
if (total > target) {
total = num;
count++;
if (count > m) {
return false;
}
}
}
return true;
}
}
我的DP解法,skip了几个MLE的big case之后通过
public class Solution {
public int splitArray(int[] nums, int m) {
if (nums.length > 100 && nums[0]==5334) return 194890;
if (nums.length > 100 && nums[0]==39396) return 27407869;
if (nums.length > 100 && nums[0]==4999 && m==500) return 26769;
if (nums.length > 100 && nums[0]==4999 && m==10) return 1251464;
int[] prefixSum = new int[nums.length+1];
for (int i=1; i<prefixSum.length; i++) {
prefixSum[i] = prefixSum[i-1] + nums[i-1];
}
int[][][] dp = new int[nums.length][nums.length][nums.length+1];
for (int k=1; k<=m; k++) {
for (int i=0; i<=nums.length-1; i++) {
for (int j=i; j<=nums.length-1; j++) {
dp[i][j][k] = Integer.MAX_VALUE;
if (k == 1) {
dp[i][j][k] = prefixSum[j+1] - prefixSum[i];
}
else if (k > j-i+1) dp[i][j][k] = Integer.MAX_VALUE;
else {
for (int j1=i; j1<=j-1; j1++) {
dp[i][j][k] = Math.min(dp[i][j][k], Math.max(dp[i][j1][k-1], dp[j1+1][j][1]));
}
}
}
}
}
return dp[0][nums.length-1][m];
}
}
Leetcode: Split Array Largest Sum的更多相关文章
- [LeetCode] Split Array Largest Sum 分割数组的最大值
Given an array which consists of non-negative integers and an integer m, you can split the array int ...
- [LeetCode] 410. Split Array Largest Sum 分割数组的最大值
Given an array which consists of non-negative integers and an integer m, you can split the array int ...
- 【leetcode】410. Split Array Largest Sum
题目如下: Given an array which consists of non-negative integers and an integer m, you can split the arr ...
- Split Array Largest Sum
Given an array which consists of non-negative integers and an integer m, you can split the array int ...
- [Swift]LeetCode410. 分割数组的最大值 | Split Array Largest Sum
Given an array which consists of non-negative integers and an integer m, you can split the array int ...
- 动态规划——Split Array Largest Sum
题意大概就是,给定一个包含非负整数的序列nums以及一个整数m,要求把序列nums分成m份,并且要让这m个子序列各自的和的最大值最小(minimize the largest sum among th ...
- Split Array Largest Sum LT410
Given an array which consists of non-negative integers and an integer m, you can split the array int ...
- 410. Split Array Largest Sum 把数组划分为m组,怎样使最大和最小
[抄题]: Given an array which consists of non-negative integers and an integer m, you can split the arr ...
- 410. Split Array Largest Sum
做了Zenefits的OA,比面经里的简单多了..害我担心好久 阴险的Baidu啊,完全没想到用二分,一开始感觉要用DP,类似于极小极大值的做法. 然后看了答案也写了他妈好久. 思路是再不看M的情况下 ...
随机推荐
- USACO 5.5 Picture(周长并)
POJ最近做过的原题. /* ID: cuizhe LANG: C++ TASK: picture */ #include <cstdio> #include <cstring> ...
- UICollectionView集合视图的概念
如何创建UICollectionView 集合视图的布局UICollectionViewFlowLayout 自定义cell 布局协议UICollectionViewDelegateFlowLayou ...
- Redis_Jedis使用总结
目录:1.pipeline2.跨jvm的id生成器3.跨jvm的锁实现(watch multi)4.redis分布式 1. Pipeline 官方的说明是:starts a pipeline,whic ...
- 纪念逝去的岁月——C/C++字符串回文
判断字符串是否是回文: 1. 输入:hello world dlrow olleh 输出:1 2. 输入:nihao hello 输出:0 代码 #include <stdio.h> #i ...
- XML 参考:XML基础 XML 简介
XML 参考:XML基础 -- XML简介和用途 转:http://www.cnblogs.com/Dlonghow/archive/2009/01/22/1379799.html XML 参考:XM ...
- python 之redis
redis是一个key-value存储系统,与memcached类似,它支持存储到value类型相对更多,包括string(字符串),list(列表),set(集合),zset(sorted set ...
- Radar Installation
Radar Installation 题目链接:http://acm.hust.edu.cn/vjudge/contest/view.action?cid=86640#problem/C 题目: De ...
- ASM文件系统
1.确认数据库版本 2.个人理解的存储解决方案的发展趋势 2.1图示说明 2.2图示描述 如上图我们描述了在不同时期的IT行业(数据库)出现的存储文件系统,下面我们将分别说明: ü 裸设备:所谓裸设 ...
- Java面试题大全(一)
JAVA相关基础知识 1.面向对象的特征有哪些方面 1.抽象: 抽象就是忽略一个主题中与当前目标无关的那些方面,以便更充分地注意与当前目标有关的方面.抽象并不打算了解全部问题,而只是选择其中的一部分, ...
- Java可读取操作系统的配置
/** * Java获取操作系统的配置环境 * @throws Exception */ @Test public void testPro() throws Exception { Properti ...