存储器的层次:

分为寄存器、主存(内存)和 辅存(外存)三个层次。

主存:高速缓冲存储器、主存储器、磁盘缓冲存储器,

主存又称为可执行存储器;

辅存:固定磁盘存储器、可移动的外部存储器;

其可长期保存数据,但不能被处理器直接访问。

此处针对的是在OS层面上对主存(内存)的管理。

内(主)存储器管理的主要功能:① 逻辑地址到物理地址的转换     ② 内存(主存)空间的分配与回收     ③ 内存信息(数据)的共享与保护     ④ 内存的逻辑扩充(虚拟存储器的实现)

一个用户程序在运行之前需要经历若干步骤,为了执行,程序应被调入内存并放在进程内:
 
 
在这些步骤中,地址可能有不同的表示形式:
符号(源程序中),可重定位的地址(目标模块),绝对地址(内存映像)
 
逻辑地址:目标代码的相对编址。由CPU生成,也称为虚拟地址
物理地址:内存存储单元的编址,内存单元的实际地址
逻辑地址空间:目标代码用逻辑地址编址对应的区域
内存存储空间:内存若干存储单元用物理地址编址对应的区域
重定位:逻辑地址转换为物理地址的操作(过程)
 
接下来,将指令与数据捆绑到内存地址,可以在以下步骤的任何一步中执行:
编译时:MS-DOS的COM格式程序
加载时:编译器生成可重定位代码
执行时:进程在执行时可以从一个内存段移到另一内存段,那么捆绑必须延迟到执行时才进行。
 
运行时从虚拟地址映射到物理地址的硬件设备称为内存管理单元(MMU)
用户进程所生成的地址在送交内存之前,都将加上重定位寄存器的值。
用户程序处理的是逻辑地址,它不会看到真实的物理地址。
 
原理图如下:
 
 
例如:
 
重定位的方式:
静态重定位:目标代码装入内存时,一次性进行逻辑地址到物理地址的地址转换。
动态重定位:目标代码装入内存时,先不进行地址转换(即原代码装入),在执行时,再实施地址转换。
 
 
内存分配的方式:连续分配和非连续分配
 
内存通常分为两个区域:
一个用于驻留操作系统,常与中断向量一起放在低内存
另一个用于用户进程,常放在高内存。
 
 
 
一、连续分配
 
四种方式:
①单一连续区分配

②固定分区分配

③可变(动态)分区分配

④可重定位分区分配

①单分区分配方法(Single-partition allocation)

重定位寄存器方案用来保护用户进程之间,用户进程与操作系统之间不会相互修改代码与数据

重定位寄存器包含了最小的物理地址;界限寄存器包含了逻辑地址的范围,每个逻辑地址必须小于界限寄存器

 
 
 
②固定分区分配
 
* 算法思想
内存可用区划分成若干个大小固定的存区,每个存区分别装入一道作业的代码(数据)。
* 算法实现
建立分区说明表,记录各分区大小、地址及分配情况
 
例如:
 

分区号

分区大小

起始地址

状态

1

12k

20k

已分配

2

32k

32k

已分配

3

64k

64k

已分配

4

128k

128k

空闲

5

     
 
 
 

分配:查分区说明表,找到一个足够大的空闲分区分配之;

回收:将回收分区对应的分区说明表状态改为“空闲”。

优点:内存可同时装入多道作业代码,算法实现简单;

缺点:存在浪费(分区一次性全部分配出去);会产生内部碎片。

③动态存储分配问题

算法思想:事先不划分分区,待作业需要分配内存时,再按需分配划分分区(分区的大小及个数不固定)。

数据结构:

空闲分区表或空闲分区链表  ---->   记录空闲分区的大小、地址等

空闲分区链表状况:

分配:查空闲分区链表,找到第一个足够大的分区,将其一分为二分配之;

分配策略(算法):首次适应算法,循环首次适应算法,最佳适应算法,最差适应算法

回收:先将回收分区与相邻空闲分区合并再修改空闲分区链表。

回收算法:前邻接合并,后邻接合并,前、后邻接合并,不邻接处理

* 优、缺点

按需分配,可解决浪费问题;
     分配算法复杂,会产生外部碎片;

邻接合并系统开销大。

* 碎片问题

碎片:可变分区分配过程中形成的若干个非常小的无法再利用的小分区,形成外部碎片

碎片分为外部碎片和内部碎片。

处理碎片的方法:

1.紧缩(compaction,拼接):用来降低外部碎片移动内存内容,以便所有空闲空间合并成一整块。

如果重定位是动态的,是在运行时进行的,那么就能采用紧缩

2.另一种可能解决外部碎片问题的方法是允许物理地址空间为非连续,这样只要有物理内存就可为进程分配:分页或分段

④可重定位分区分配

* 算法思想

在可变分区分配算法的基础上,采用动态重定位方式装入程序(数据)。当无足够大的分区供分配时,若总的空闲存储容量够用,则将各分区中的内容向内存一端移动(紧凑),使另一端形成一个大的空闲分区,然后再分配。

例:前例若要为作业10分配120k的存储空间,因无足够大分区(总空闲容量290k),则先进行合并处理:

内存的离散分配方式见下篇。

OS存储器管理(一)的更多相关文章

  1. OS存储器管理(三) 虚拟存储器

    基本概念与实现 1)局部性原理 在一段时间内,运行的作业程序仅访问(涉及到)一部分作业代码,即不会涉及整个地址空间.即在一段时间间隔内,仅装入一部分代码,作业照样能正常运行 2)虚拟存储器的引入 作业 ...

  2. OS存储器管理(二)

    离散分配 分页(Paging),分段,段页式 一.分页   一个进程的物理地址可以是非连续的:   将物理内存分成固定大小的块,称为块(frame): 将逻辑内存分为同样大小的块,称为页(page): ...

  3. MMU——存储器管理单元

    更多文档参见:http://pan.baidu.com/s/1qW0hjwo MMU,全称Memory Manage Unit, 中文名——存储器管理单元. 许多年以前,当人们还在使用DOS或是更古老 ...

  4. Intel 80386 微处理器的存储器管理

    一.存储器的管理       存储器的管理是一种硬件机制,微处理器在总线地址上对物理存储器进行寻址.但是,为了给程序提供比物理存储器容量更大的空间,就引入了虚拟存储器的概念,它在外存(比如磁盘)的支持 ...

  5. 从内存管理原理,窥探OS内存管理机制

    摘要:本文将从最简单的内存管理原理说起,带大家一起窥探OS的内存管理机制,由此熟悉底层的内存管理机制,写出高效的应用程序. 本文分享自华为云社区<探索OS的内存管理原理>,作者:元闰子 . ...

  6. Mac OS 下包管理器 homebrew的安装

    homebrew :熟悉mac os的小伙伴们一定都知道这个包管理工具,它非常方便且好用,安装它只需要打开终端并将以下代码粘贴到终端中运行即可: /usr/bin/ruby -e "$(cu ...

  7. 8、Cocos2dx 3.0三,找一个小游戏开发3.0存储器管理的版本号

    重开发人员的劳动成果,转载的时候请务必注明出处:http://blog.csdn.net/haomengzhu/article/details/27693365 复杂的内存管理 移动设备上的硬件资源十 ...

  8. ARM“庖丁解牛”之存储器管理单元MMU

    转:http://blog.sina.com.cn/s/blog_a07635070101bcbt.html 最近笔者详细地学习了由杜春雷老师编写的<ARM体系结构与编程>.对ARM存储管 ...

  9. MMU内存管理单元相关知识点总结

    1.MMU是Memory Management Unit的缩写,中文名是内存管理单元,它是中央处理器(CPU)中用来管理虚拟存储器.物理存储器的控制线路,同时也负责虚拟地址映射为物理地址,以及提供硬件 ...

随机推荐

  1. Mac上打开拷贝到移动硬盘里的文件提示“已经被osx使用不能打开”解决办法

    在终端里面粘贴xattr -d com.apple.FinderInfo(此处按一下空格),然后把文件拖进终端窗口,按一下回车就好了

  2. (安装linux操作系统)

    安装linux centos系统. 准备一张centos的镜像可以去官网下载. 准备VMware Workstation官网下载. 作为初学者一般都用虚拟机安装(VMwareWorkstation), ...

  3. emacs 新手笔记(一) —— 阅读【emacs tutorial】

    ilocker:关注 Android 安全(新入行,0基础) QQ: 2597294287 [emacs tutorial]是熟悉 emacs 的入门资料.一共几十个命令,不需硬记,勤练即可. 翻页命 ...

  4. Linux 下子线程的 pthread_cleanup_push() 和 pthread_cleanup_pop() 研究

    线程退出前可能有一些清理工作,但是这部分代码又不会放到线程主体部分,就需要挂接一个或者几个线程“清洁工”来做这部分事情.需要这对兄弟: #include<pthread.h> void p ...

  5. NopCommerce 关于Customer的会员类别及会员价处理 的尝试途径

    示例效果: 当Customer是某个会员级别或内部员工时, 购物结算时享受一定的折扣: 相关设定如下: Step1.新增会员类别    Admin - Customers - Customer rol ...

  6. 记一次惨痛的线上bug

    讲述背景,刚入职新公司2个月的时候,接手一个红包系统.资历尚浅,对业务也不是很熟悉.公司开发新的平台,需要使用红包功能来进行推广,按照产品的需求,进行开发...然而,问题就出在这里,红包接口比较陈旧, ...

  7. u3d_shader_surface_shader_2

    http://docs.unity3d.com/Manual/SL-SurfaceShaderExamples.html http://my.oschina.net/u/138823/blog/181 ...

  8. java 27 - 10 反射之 动态代理的代码实现

    为什么要写动态代理类? 例子: 如果现在想做个登陆注册的功能.用户可以执行登陆.注册.添加.删除这些功能. 但是,有些功能是要有一定权限才可以执行的. 而现在已经有了个用户类的接口和该类的实现类了,但 ...

  9. 在脚本中使用export导出变量值

    LD_LIBRARY_PATH环境变量可以用于设置Linux动态库的位置,常见的用法如export LD_LIBRARY_PATH=/home/username/foo:$LD_LIBRARY_PAT ...

  10. http协议(五)web服务器

    1.http1.1规范允许一台http服务器搭建多个web站点... 比如提供web托管服务的供应商,可以用一台服务器为多为客户服务,也可以以每位客户持有的域名运行各自不同的网站,这里利用了虚拟服务器 ...