题目链接

Given a m x n grid filled with non-negative numbers, find a path from top left to bottom right which minimizes the sum of all numbers along its path.

Note: You can only move either down or right at any point in time.


典型的动态规划问题。

设dp[i][j]表示从左上角到grid[i][j]的最小路径和。那么dp[i][j] = grid[i][j] + min( dp[i-1][j], dp[i][j-1] );

下面的代码中,为了处理计算第一行和第一列的边界条件,我们令dp[i][j]表示从左上角到grid[i-1][j-1]的最小路径和,最后dp[m][n]是我们所求的结果

class Solution {
public:
int minPathSum(vector<vector<int> > &grid) {
int row = grid.size(),col;
if(row == 0)return 0;
else col = grid[0].size();
vector<vector<int> >dp(row+1, vector<int>(col+1, INT_MAX));
dp[0][1] = 0;
for(int i = 1; i <= row; i++)
for(int j = 1; j <= col; j++)
dp[i][j] = grid[i-1][j-1] + min(dp[i][j-1], dp[i-1][j]);
return dp[row][col];
}
};

 

注意到上面的代码中dp[i][j] 只和上一行的dp[i-1][j]和上一列的dp[i][j-1]有关,因此可以优化空间为O(n)(准确来讲空间复杂度可以是O(min(row,col

)))                          本文地址

class Solution {
public:
int minPathSum(vector<vector<int> > &grid) {
int row = grid.size(),col;
if(row == 0)return 0;
else col = grid[0].size();
vector<int >dp(col+1, INT_MAX);
dp[1] = 0;
for(int i = 1; i <= row; i++)
for(int j = 1; j <= col; j++)
dp[j] = grid[i-1][j-1] + min(dp[j], dp[j-1]);
return dp[col];
}
};

问题扩展

最大路径和只需要把上面的递推公式中的min换成max。

现在有个问题,如果两个人同时从左上角出发,目的地是右下角,两个人的路线不能相交(即除了出发点和终点外,两个人不同通过同一个格子),使得两条路径的和最大。(这和一个人先从左上角到右下角,再回到左上角是相同的问题)。

这是双线程动态规划问题:假设网格为grid,dp[k][i][j]表示两个人都走了k步,第一个人向右走了i步,第二个人向右走了j步 时的最大路径和(只需要三个变量就可以定位出两个人的位置grid[k-i][i-1] 、 grid[k-j][j-1]),那么

dp[k][i][j] = max(dp[k-1][i-1][j-1], dp[k-1][i][j], dp[k-1][i-1][j], dp[k-1][i][j-1]) + grid[k-i][i-1] + grid[k-j][j-1]  (我们假设在起始位置时就已经走了一步)

 

这个方程的意思是从第k-1步到第k步,可以两个人都向右走、都向下走、第一个向下第二个向右、第一个向右第二个向下,这四种走法中选择上一步中路径和最大的。

 

由于要保证两条路线不能相交,即两个人走的过程中,有一个人向右走的步数永远大于另一个人向右走的步数,我们不妨设第二个人向右走的步数较大,即dp[k][i][j]中j > i才是有效的状态。走到终点的步数为:网格的行数+网格的列数-1

 

需要注意的是:当走了k步时,某个人向右走的步数必须 > k - 网格的行数,如果向右走的步数 <= k-行数,那么向下走的步数 = k-向右走的步数 >= 行数,此时超出了网格的范围。由于我们假设了 j > i,因此只要保证 i > k-网格行数即可。

代码如下:

int max2PathSum(vector<vector<int> > grid)
{
int row = grid.size(), col = grid[0].size();
vector<vector<vector<int> > > dp(row+col, vector<vector<int> >(col+1, vector<int>(col+1, 0)));
for(int step = 2; step <= row+col-2; step++)
for(int i = max(1, step-row+1); i <= step && i <= col; i++)
for(int j = i+1; j <= step && j <= col; j++)
{ dp[step][i][j] = max(max(dp[step-1][i][j], dp[step-1][i-1][j-1]), max(dp[step-1][i-1][j], dp[step-1][i][j-1]));
dp[step][i][j] += (grid[step-i][i-1] + grid[step-j][j-1]);
}
return dp[row+col-2][col-1][col] + 2*grid[row-1][col-1] + 2*grid[0][0];
}

 

我们最终的目标是dp[row+col-1][col][col] = max{dp[row+col-2][col-1][col-1], dp[row+col-2][col][col], dp[row+col-2][col-1][col], dp[row+col-2][col][col-1]} + 2*grid[row-1][col-1]

由于dp[row+col-2][col-1][col-1], dp[row+col-2][col][col], dp[row+col-2][col][col-1]都是无效的状态(dp[k][i][j]中j > i才是有效的状态),

所以dp[row+col-1][col][col]  = dp[row+col-2][col-1][col] + 2*grid[row-1][col-1],代码中最后结果还加上了所在起点的的网格值。

由以上可知,循环中最多只需要求到了dp[row+col-2][][]。

 

nyoj中 传纸条(一)就是这个问题,可以在这一题中测试上述函数的正确性,测试代码如下:

int main()
{
int n;
scanf("%d",&n);
for(int i = 1; i <= n; i++)
{
int row, col;
scanf("%d%d", &row, &col);
vector<vector<int> >grid(row, vector<int>(col));
for(int a = 0; a < row; a++)
for(int b = 0; b < col; b++)
scanf("%d", &grid[a][b]);
printf("%d\n", max2PathSum(grid));
}
return 0;
}

 

这个问题还可以使用最小费用流来解决,具体可以参考here

 

 

【版权声明】转载请注明出处http://www.cnblogs.com/TenosDoIt/p/3774804.html

LeetCode:Minimum Path Sum(网格最大路径和)的更多相关文章

  1. LeetCode: Minimum Path Sum 解题报告

    Minimum Path Sum Given a m x n grid filled with non-negative numbers, find a path from top left to b ...

  2. 动态规划小结 - 二维动态规划 - 时间复杂度 O(n*n)的棋盘型,题 [LeetCode] Minimum Path Sum,Unique Paths II,Edit Distance

    引言 二维动态规划中最常见的是棋盘型二维动态规划. 即 func(i, j) 往往只和 func(i-1, j-1), func(i-1, j) 以及 func(i, j-1) 有关 这种情况下,时间 ...

  3. [LeetCode] 113. Path Sum II 二叉树路径之和之二

    Given a binary tree and a sum, find all root-to-leaf paths where each path's sum equals the given su ...

  4. [LeetCode] 112. Path Sum 二叉树的路径和

    Given a binary tree and a sum, determine if the tree has a root-to-leaf path such that adding up all ...

  5. LeetCode 437. Path Sum III (路径之和之三)

    You are given a binary tree in which each node contains an integer value. Find the number of paths t ...

  6. [LeetCode] Minimum Path Sum 最小路径和

    Given a m x n grid filled with non-negative numbers, find a path from top left to bottom right which ...

  7. LeetCode OJ:Minimum Path Sum(最小路径和)

    Given a m x n grid filled with non-negative numbers, find a path from top left to bottom right which ...

  8. Leetcode Minimum Path Sum

    Given a m x n grid filled with non-negative numbers, find a path from top left to bottom right which ...

  9. LeetCode 112. Path Sum (二叉树路径之和)

    Given a binary tree and a sum, determine if the tree has a root-to-leaf path such that adding up all ...

随机推荐

  1. oracle安装心得

    1.官网下载 oracle 11g r2 2.官网下载的oracle包括两个文件夹file1和file2,需要将解压后的file2中的stage-components文件夹下的内容复制到file1-s ...

  2. jsp_包含指令

    1.静态包含: <%@ include file="被包含的文件的路径"%> 2.动态包含: 不传递参数:<jsp:include page="{要包含 ...

  3. AngularJs的$http使用随笔

    AngularJs的$http服务是Angularjs自带的核心服务之一,用来与HTTP远程服务器交互. 关于$http使用,我体会的一下几点注意: 1.在使用是报“Uncaught Referenc ...

  4. css3写的实用表单美化

    <!DOCTYPE html> <!--[if IE 7 ]> <html lang="en" class="ie7"> & ...

  5. 设计模式之美:Creational Patterns(创建型模式)

    创建型模式(Creational Patterns)抽象了对象实例化过程. 它们帮助一个系统独立于如何创建.组合和表示它的那些对象. 一个类创建型模式使用继承改变被实例化的类. 一个对象创建型模式将实 ...

  6. Java Config 下的Spring Test方式

    用了三种方式: 1.纯手动取bean: package com.wang.test; import com.marsmother.commission.core.config.MapperConfig ...

  7. 团队项目——打地鼠游戏(SPEC)系统性能评估测试

    1.SPEC测试的目标: 本轮测试的目的是测试打地鼠游戏的需求以及确保每个需求都能得到满足的方法.编写此需求说明书是为了使用户和开发人员对所开发的系统有一致的理解.通过阅读此说明书,开发人员可以了解当 ...

  8. 多网卡的7种bond模式原理

    多网卡的7种bond模式原理 Linux 多网卡绑定 网卡绑定mode共有七种(0~6) bond0.bond1.bond2.bond3.bond4.bond5.bond6 常用的有三种 mode=0 ...

  9. HTTP权威指南阅读笔记四:连接管理

    HTTP通信是由TCP/IP承载的,HTTP紧挨着TCP,位于其上层,所以HTTP事务的性能很大程度上取决于底层TCP通道的性能. HTTP事务的时延 如图: HTTP事务的时延有以下几种主要原因. ...

  10. [安卓] 8、VIEW和SURFACEVIEW游戏框架

    这是个简单的游戏框架,上图显示我们实现了屏幕上对象的位置控制.这里要1个简单的layout资源和2个java类:在MainActivity中主要和以往一样,唯一不同的是去除电池图标和标题等操作,然后第 ...