奇怪吸引子---WangSun
奇怪吸引子是混沌学的重要组成理论,用于演化过程的终极状态,具有如下特征:终极性、稳定性、吸引性。吸引子是一个数学概念,描写运动的收敛类型。它是指这样的一个集合,当时间趋于无穷大时,在任何一个有界集上出发的非定常流的所有轨道都趋于它,这样的集合有很复杂的几何结构。由于奇怪吸引子与混沌现象密不可分,深入了解吸引子集合的性质,可以揭示出混沌的规律。
这里会展示利用奇怪吸引子生成的艺术图像。奇怪吸引子通常含有三维或四维的数据,而图像是二维的,因此可以从不同的位面将奇怪吸引子投影到二维图像中。
原图及数学公式取自:
http://chaoticatmospheres.com/125670/1204030/gallery/strange-attractors

这里使用自己定义语法的脚本代码生成混沌图像,相关软件参见:YChaos生成混沌图像。如果你对数学生成图形图像感兴趣,欢迎加入QQ交流群: 367752815。
脚本代码:
[ScriptLines]
u=a*i + c*j*k
v=b*i + d*j - i*k
w=e*k + f*i*j
i=i+u*t
j=j+v*t
k=k+w*t
x=i
y=j [Variables]
a=0.200000
b=-0.010000
c=1.000000
d=-0.400000
e=-1.000000
f=-1.000000
i=1.000000
j=1.000000
k=1.000000
t=0.000500
混沌图像:



奇怪吸引子---WangSun的更多相关文章
- 奇怪吸引子---YuWang
奇怪吸引子是混沌学的重要组成理论,用于演化过程的终极状态,具有如下特征:终极性.稳定性.吸引性.吸引子是一个数学概念,描写运动的收敛类型.它是指这样的一个集合,当时间趋于无穷大时,在任何一个有界集上出 ...
- 奇怪吸引子---WimolBanlue
奇怪吸引子是混沌学的重要组成理论,用于演化过程的终极状态,具有如下特征:终极性.稳定性.吸引性.吸引子是一个数学概念,描写运动的收敛类型.它是指这样的一个集合,当时间趋于无穷大时,在任何一个有界集上出 ...
- 奇怪吸引子---TreeScrollUnifiedChaoticSystem
奇怪吸引子是混沌学的重要组成理论,用于演化过程的终极状态,具有如下特征:终极性.稳定性.吸引性.吸引子是一个数学概念,描写运动的收敛类型.它是指这样的一个集合,当时间趋于无穷大时,在任何一个有界集上出 ...
- 奇怪吸引子---Thomas
奇怪吸引子是混沌学的重要组成理论,用于演化过程的终极状态,具有如下特征:终极性.稳定性.吸引性.吸引子是一个数学概念,描写运动的收敛类型.它是指这样的一个集合,当时间趋于无穷大时,在任何一个有界集上出 ...
- 奇怪吸引子---ShimizuMorioka
奇怪吸引子是混沌学的重要组成理论,用于演化过程的终极状态,具有如下特征:终极性.稳定性.吸引性.吸引子是一个数学概念,描写运动的收敛类型.它是指这样的一个集合,当时间趋于无穷大时,在任何一个有界集上出 ...
- 奇怪吸引子---Sakarya
奇怪吸引子是混沌学的重要组成理论,用于演化过程的终极状态,具有如下特征:终极性.稳定性.吸引性.吸引子是一个数学概念,描写运动的收敛类型.它是指这样的一个集合,当时间趋于无穷大时,在任何一个有界集上出 ...
- 奇怪吸引子---Russler
奇怪吸引子是混沌学的重要组成理论,用于演化过程的终极状态,具有如下特征:终极性.稳定性.吸引性.吸引子是一个数学概念,描写运动的收敛类型.它是指这样的一个集合,当时间趋于无穷大时,在任何一个有界集上出 ...
- 奇怪吸引子---Rucklidge
奇怪吸引子是混沌学的重要组成理论,用于演化过程的终极状态,具有如下特征:终极性.稳定性.吸引性.吸引子是一个数学概念,描写运动的收敛类型.它是指这样的一个集合,当时间趋于无穷大时,在任何一个有界集上出 ...
- 奇怪吸引子---RayleighBenard
奇怪吸引子是混沌学的重要组成理论,用于演化过程的终极状态,具有如下特征:终极性.稳定性.吸引性.吸引子是一个数学概念,描写运动的收敛类型.它是指这样的一个集合,当时间趋于无穷大时,在任何一个有界集上出 ...
随机推荐
- 打印出所有的"水仙花数",所谓"水仙花数"是指一个三位数,其各位数字立方和等于该数本身。例如:153是一个"水仙花数",因为153=1的三次方+5的三次方+3的三次方。
public class Three_03 { public static void main(String[] args) { for(int i=100;i<1000;i++){ int a ...
- UML用例图中泛化、扩展、包括
在画用例图的时候,理清用例之间的关系是重点.用例的关系有泛化(generalization).扩展(extend)和包含(include).其中include和extend最易混淆.下面我们结合实例彻 ...
- win10使用Composer-Setup安装Composer以及使用Composer安装Yii2最新版
1:下载 ca-bundle.crt和cacert.pem 将这两个文件放在php目录下 2:php.ini中添加上述两个文件的路径 curl.cainfo=C:/xampp/php/ca-bundl ...
- redis-cli 命令总结
redis-cli 命令总结 Redis提供了丰富的命令(command)对数据库和各种数据类型进行操作,这些command可以在Linux终端使用.在编程时,比如使用Redis 的Java语言包,这 ...
- 【4_237】Delete Node in a Linked List
Delete Node in a Linked List Total Accepted: 48121 Total Submissions: 109297 Difficulty: Easy Write ...
- 使用的组件:Web Uploader
Web UploaderWebUploader是由Baidu WebFE(FEX)团队开发的一个简单的以HTML5为主,FLASH为辅的现代文件上传组件.在现代的浏览器里面能充分发挥HTML5的优势, ...
- IOS笔记之UIKit_UIScrollView
//通过系统的一个接口 拿到是不是第一次启动这个程序 如果是就调用导航页 如果不是 直接进入下一个视图 NSUserDefaults *userDefaults = [NSUserDefaults s ...
- linux-2 下tomcat重启定向输出日志
#!/bin/sh pid=`ps aux | grep tomcat | grep -v grep | awk '{print $2}'` echo $pid if [ -n "$pid& ...
- 记一次SQLServer数据库误删数据找回
昨天 同事在本机清理数据库表时,连接到了生产机,误删了二十几张表,幸好是晚上加班的时候删除的,生产机上当时是一天一备份,还原备份是最后的策略,最关键的还是要找回数据. ...
- Linux 下zip包的压缩与解压
linux zip 命令详解 功能说明:压缩文件. 语 法:zip [-AcdDfFghjJKlLmoqrSTuvVwXyz$][-b <工作目录>][-ll][-n <字尾字符串& ...