Ombrophobic Bovines

Time Limit: 1000MS
Memory Limit: 65536K

Total Submissions: 14519
Accepted: 3170

Description

FJ's cows really hate getting wet so much that the mere thought of getting caught in the rain makes them shake in their hooves. They have decided to put a rain siren on the farm to let them know when rain is approaching. They intend to create a rain evacuation plan so that all the cows can get to shelter before the rain begins. Weather forecasting is not always correct, though. In order to minimize false alarms, they want to sound the siren as late as possible while still giving enough time for all the cows to get to some shelter.
The farm has F (1 <= F <= 200) fields on which the cows graze. A set of P (1 <= P <= 1500) paths connects them. The paths are wide, so that any number of cows can traverse a path in either direction.
Some of the farm's fields have rain shelters under which the cows can shield themselves. These shelters are of limited size, so a single shelter might not be able to hold all the cows. Fields are small compared to the paths and require no time for cows to traverse.
Compute the minimum amount of time before rain starts that the siren must be sounded so that every cow can get to some shelter.

Input

* Line 1: Two space-separated integers: F and P
* Lines 2..F+1: Two space-separated integers that describe a field. The first integer (range: 0..1000) is the number of cows in that field. The second integer (range: 0..1000) is the number of cows the shelter in that field can hold. Line i+1 describes field i.
* Lines F+2..F+P+1: Three space-separated integers that describe a path. The first and second integers (both range 1..F) tell the fields connected by the path. The third integer (range: 1..1,000,000,000) is how long any cow takes to traverse it.

Output

* Line 1: The minimum amount of time required for all cows to get under a shelter, presuming they plan their routes optimally. If it not possible for the all the cows to get under a shelter, output "-1".

Sample Input

3 4
7 2
0 4
2 6
1 2 40
3 2 70
2 3 90
1 3 120

Sample Output

110
 
题意:有F块地,告诉你每块地牛的数量和雨篷能遮蔽的牛的数量,有P条路,告诉你每条路连接的两块地和牛走这条路所需要的时间。
     要你求让所有的牛都能在雨棚下躲雨的最短时间,如果做不到,输出

-1一下解释来自:http://www.2cto.com/kf/201406/312530.html

二分时间,然后把每个田地之间的最短距离用floyd最短路求出来。然后建立一个源点与汇点,将田地拆分成两个点,在距离之内的
进行连边,要单向连边。然后将源点与田地相连,权值为每个田地的牛的数目,再把另一边的田地与汇点相连,权值为每个田地最大
可避雨的牛的数目。拆开的田地之间权值可以为无穷大。

view code#include <cstdio>
#include <algorithm>
#include <cstring>
#include <iostream>
#include <queue>
using namespace std;
typedef long long ll;
const ll INF = 1LL<<60;
const int inf = 1<<30;
const int N = 500;
int n, F, P, pre[N], cur[N];
int s, t, d[N];
ll dis[N][N]; struct om
{
int num, cap;
}loc[N]; struct edge
{
int u, v, cap, flow, next;
edge(int u, int v, int cap, int flow, int next):u(u), v(v), cap(cap), flow(flow), next(next) {}
edge() {}
}e[N*N*4];
int ecnt; void floyd()
{
for(int k=1; k<=n; k++)
for(int i=1; i<=n; i++) if(dis[i][k]!=INF)
for(int j=1; j<=n; j++)
if(dis[k][j]!=INF && dis[i][j]>dis[i][k] + dis[k][j])
dis[i][j] = dis[i][k] + dis[k][j];
} void addedge(int u, int v, int w)
{
e[ecnt] = edge(u, v, w, 0, pre[u]);
pre[u] = ecnt++;
e[ecnt] = edge(v, u, 0, 0, pre[v]);
pre[v] = ecnt++;
} bool vis[N<<1];
bool BFS()
{
memset(vis, 0 ,sizeof(vis));
queue<int > q;
q.push(s);
d[s] = 0;
vis[s] = 1;
while(!q.empty())
{
int x = q.front(); q.pop();
for(int i = pre[x]; ~i; i=e[i].next)
{
int v = e[i].v;
if(!vis[v] && e[i].cap>e[i].flow)
{
vis[v] = 1;
d[v] = d[x] + 1;
q.push(v);
}
}
}
return vis[t];
} int DFS(int x, int c)
{
if(x==t || c==0) return c;
int flow = 0, f;
for(int &i=cur[x]; ~i; i=e[i].next)
{
int v = e[i].v;
if(d[x]+1==d[v] && (f=DFS(v,min(c,e[i].cap-e[i].flow)))>0)
{
e[i].flow += f;
e[i^1].flow -=f;
flow += f;
c -= f;
if(c==0) break;
}
}
return flow;
} ll Maxflow(int s, int t)
{
int flow = 0;
while(BFS())
{
for(int i=s; i<=t; i++) cur[i] = pre[i];
flow += DFS(s, inf);
}
return flow;
} bool is_ok(ll m, int sum)
{
s = 0, t = n*2+1;
memset(pre, -1, sizeof(pre));
ecnt = 0;
for(int i=1; i<=n; i++)
{
addedge(s, i, loc[i].num);
addedge(i+n, t, loc[i].cap);
} for(int i=1; i<=n; i++)
for(int j=1; j<=n; j++) if(dis[i][j]<=m)
addedge(i, j+n, inf); return Maxflow(s,t)>=sum;
} ll solve()
{
int sumn = 0, sumc = 0;
for(int i=1; i<=n; i++)
{
scanf("%d%d", &loc[i].num, &loc[i].cap);
sumn += loc[i].num;
sumc += loc[i].cap;
}
int u, v, w;
for(int i=1; i<=n; i++)
{
for(int j=1; j<=n; j++) dis[i][j] = INF;
dis[i][i] = 0;
}
for(int i=0; i<P; i++)
{
scanf("%d%d%d", &u, &v, &w);
if(w<dis[u][v]) dis[u][v] = dis[v][u] = w;
}
if(sumn > sumc) return -1;
floyd(); ll l = 0, r = 0, ans = -1;
for(int i=1; i<n; i++)
{
for(int j=i+1; j<=n; j++)
if(r<dis[i][j] && dis[i][j]!=INF) r = dis[i][j];
}
while(l<=r)
{
ll mid = (l+r)>>1;
if(is_ok(mid, sumn)) ans = mid, r = mid - 1;
else l = mid + 1;
// printf("ans = %d\n", ans);
}
return ans;
} int main()
{
// freopen("in", "r", stdin);
while(scanf("%d%d", &n, &P)>0) cout<<solve()<<endl;
return 0;
}

poj 2391 Ombrophobic Bovines(最大流+floyd+二分)的更多相关文章

  1. poj 2391 Ombrophobic Bovines, 最大流, 拆点, 二分, dinic, isap

    poj 2391 Ombrophobic Bovines, 最大流, 拆点, 二分 dinic /* * Author: yew1eb * Created Time: 2014年10月31日 星期五 ...

  2. POJ2391:Ombrophobic Bovines(最大流+Floyd+二分)

    Ombrophobic Bovines Time Limit: 1000MSMemory Limit: 65536K Total Submissions: 21660Accepted: 4658 题目 ...

  3. POJ 2391 Ombrophobic Bovines ( 经典最大流 && Floyd && 二分 && 拆点建图)

    题意 : 给出一些牛棚,每个牛棚都原本都有一些牛但是每个牛棚可以容纳的牛都是有限的,现在给出一些路与路的花费和牛棚拥有的牛和可以容纳牛的数量,要求最短能在多少时间内使得每头牛都有安身的牛棚.( 这里注 ...

  4. POJ 2391 Ombrophobic Bovines (Floyd + Dinic +二分)

    Ombrophobic Bovines Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 11651   Accepted: 2 ...

  5. POJ 2391 Ombrophobic Bovines

    Ombrophobic Bovines Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 18623   Accepted: 4 ...

  6. POJ 2391 Ombrophobic Bovines ★(Floyd+二分+拆点+最大流)

    [题意]有n块草地,一些奶牛在草地上吃草,草地间有m条路,一些草地上有避雨点,每个避雨点能容纳的奶牛是有限的,给出通过每条路的时间,问最少需要多少时间能让所有奶牛进入一个避雨点. 和POJ2112很类 ...

  7. POJ 2391 Ombrophobic Bovines (二分答案+floyd+最大流)

    <题目链接> 题目大意: 给定一个有$n$个顶点和$m$条边的无向图,点$i$ 处有$A_i$头牛,点$i$ 处的牛棚能容纳$B_i$头牛,每条边有一个时间花费$t_i$(表示从一个端点走 ...

  8. POJ 2391 Ombrophobic Bovines(Floyd+二分+最大流)

    题目链接 题意:农场有F(1 <= F <= 200)片草地用于放牛,这些草地有P(1 <= P <= 1500)连接,农场的草地上有一些避雨点,奶牛们可以在避雨点避雨,但是避 ...

  9. POJ 2391 Ombrophobic Bovines(二分+拆点+最大流)

    http://poj.org/problem?id=2391 题意: 给定一个无向图,点i处有Ai头牛,点i处的牛棚能容纳Bi头牛,求一个最短时间T,使得在T时间内所有的牛都能进到某一牛棚里去. 思路 ...

随机推荐

  1. AEAI HR V1.5.1升级说明,开源人力资源管理系统

    本次发版的AEAI HR_v1.5.1版本为AEAI HR_v1.5.0版本的升级版本,该产品现已开源并上传至开源社区http://www.oschina.net/p/aeaihr. 1 升级说明 A ...

  2. AEAI ESB V3.5.4开源发布,应用集成平台

    AEAI ESB 应用集成平台为数通畅联的核心产品,本着分享传递的理念,数通畅联将ESB管理控制台项目开源,目的在于满足客户与伙伴的OEM需求,以及为广大IT爱好者的集成工具提供多一种选择,多一种便利 ...

  3. Activity按下2次退出和获取当前时间

    先看下onBackPressed和onKeyDown的区别 在Android上有两种方法来获取该按钮的事件 1.直接获取按钮按下事件,此方法兼容Android 1.0到Android 2.1 也是常规 ...

  4. [moka同学笔记]Yii2.0验证码

    1.Model中Code.php <?php /** * Created by PhpStorm. * User: moka同学 * Date: 2016/07/25 * Time: 10:48 ...

  5. Linux Shell系列教程之(十七) Shell文件包含

    本文是Linux Shell系列教程的第(十七)篇,更多Linux Shell教程请看:Linux Shell系列教程 通过文件包含,可以引用其他文件的内容,也可以将复杂内容分开,使程序结构更加清晰. ...

  6. Tomcat/JSP中文编码配置

    来源:http://blog.csdn.net/zhangzikui/article/details/6169978         http://www.iteye.com/topic/300656 ...

  7. Microsoft SQL Server,附加数据库 错误:Error 916解决方法

    错误信息:错误提示:标题: Microsoft SQL Server Management Studio Express ——————————  无法为此请求检索数据. (Microsoft.SqlS ...

  8. basket.js 源码分析

    basket.js 源码分析 一.前言 basket.js 可以用来加载js脚本并且保存到 LocalStorage 上,使我们可以更加精准地控制缓存,即使是在 http 缓存过期之后也可以使用.因此 ...

  9. SharePoint 2013 JQuery Asset Picket

      var b = new AssetPickerConfig(""); b.ClientID = ""; b.DefaultAssetLocation = & ...

  10. android 浏览器开发实例

    android app需要通过手机显示网页信息还是比较常用的,比如我最近业余开发的 抢商铺游戏,需要对游戏规则做说明,规则会比较多,而且要经常变动,就想到用网页来展示,更新起来方便,不像应用,一旦发布 ...