Ombrophobic Bovines

Time Limit: 1000MS
Memory Limit: 65536K

Total Submissions: 14519
Accepted: 3170

Description

FJ's cows really hate getting wet so much that the mere thought of getting caught in the rain makes them shake in their hooves. They have decided to put a rain siren on the farm to let them know when rain is approaching. They intend to create a rain evacuation plan so that all the cows can get to shelter before the rain begins. Weather forecasting is not always correct, though. In order to minimize false alarms, they want to sound the siren as late as possible while still giving enough time for all the cows to get to some shelter.
The farm has F (1 <= F <= 200) fields on which the cows graze. A set of P (1 <= P <= 1500) paths connects them. The paths are wide, so that any number of cows can traverse a path in either direction.
Some of the farm's fields have rain shelters under which the cows can shield themselves. These shelters are of limited size, so a single shelter might not be able to hold all the cows. Fields are small compared to the paths and require no time for cows to traverse.
Compute the minimum amount of time before rain starts that the siren must be sounded so that every cow can get to some shelter.

Input

* Line 1: Two space-separated integers: F and P
* Lines 2..F+1: Two space-separated integers that describe a field. The first integer (range: 0..1000) is the number of cows in that field. The second integer (range: 0..1000) is the number of cows the shelter in that field can hold. Line i+1 describes field i.
* Lines F+2..F+P+1: Three space-separated integers that describe a path. The first and second integers (both range 1..F) tell the fields connected by the path. The third integer (range: 1..1,000,000,000) is how long any cow takes to traverse it.

Output

* Line 1: The minimum amount of time required for all cows to get under a shelter, presuming they plan their routes optimally. If it not possible for the all the cows to get under a shelter, output "-1".

Sample Input

3 4
7 2
0 4
2 6
1 2 40
3 2 70
2 3 90
1 3 120

Sample Output

110
 
题意:有F块地,告诉你每块地牛的数量和雨篷能遮蔽的牛的数量,有P条路,告诉你每条路连接的两块地和牛走这条路所需要的时间。
     要你求让所有的牛都能在雨棚下躲雨的最短时间,如果做不到,输出

-1一下解释来自:http://www.2cto.com/kf/201406/312530.html

二分时间,然后把每个田地之间的最短距离用floyd最短路求出来。然后建立一个源点与汇点,将田地拆分成两个点,在距离之内的
进行连边,要单向连边。然后将源点与田地相连,权值为每个田地的牛的数目,再把另一边的田地与汇点相连,权值为每个田地最大
可避雨的牛的数目。拆开的田地之间权值可以为无穷大。

view code#include <cstdio>
#include <algorithm>
#include <cstring>
#include <iostream>
#include <queue>
using namespace std;
typedef long long ll;
const ll INF = 1LL<<60;
const int inf = 1<<30;
const int N = 500;
int n, F, P, pre[N], cur[N];
int s, t, d[N];
ll dis[N][N]; struct om
{
int num, cap;
}loc[N]; struct edge
{
int u, v, cap, flow, next;
edge(int u, int v, int cap, int flow, int next):u(u), v(v), cap(cap), flow(flow), next(next) {}
edge() {}
}e[N*N*4];
int ecnt; void floyd()
{
for(int k=1; k<=n; k++)
for(int i=1; i<=n; i++) if(dis[i][k]!=INF)
for(int j=1; j<=n; j++)
if(dis[k][j]!=INF && dis[i][j]>dis[i][k] + dis[k][j])
dis[i][j] = dis[i][k] + dis[k][j];
} void addedge(int u, int v, int w)
{
e[ecnt] = edge(u, v, w, 0, pre[u]);
pre[u] = ecnt++;
e[ecnt] = edge(v, u, 0, 0, pre[v]);
pre[v] = ecnt++;
} bool vis[N<<1];
bool BFS()
{
memset(vis, 0 ,sizeof(vis));
queue<int > q;
q.push(s);
d[s] = 0;
vis[s] = 1;
while(!q.empty())
{
int x = q.front(); q.pop();
for(int i = pre[x]; ~i; i=e[i].next)
{
int v = e[i].v;
if(!vis[v] && e[i].cap>e[i].flow)
{
vis[v] = 1;
d[v] = d[x] + 1;
q.push(v);
}
}
}
return vis[t];
} int DFS(int x, int c)
{
if(x==t || c==0) return c;
int flow = 0, f;
for(int &i=cur[x]; ~i; i=e[i].next)
{
int v = e[i].v;
if(d[x]+1==d[v] && (f=DFS(v,min(c,e[i].cap-e[i].flow)))>0)
{
e[i].flow += f;
e[i^1].flow -=f;
flow += f;
c -= f;
if(c==0) break;
}
}
return flow;
} ll Maxflow(int s, int t)
{
int flow = 0;
while(BFS())
{
for(int i=s; i<=t; i++) cur[i] = pre[i];
flow += DFS(s, inf);
}
return flow;
} bool is_ok(ll m, int sum)
{
s = 0, t = n*2+1;
memset(pre, -1, sizeof(pre));
ecnt = 0;
for(int i=1; i<=n; i++)
{
addedge(s, i, loc[i].num);
addedge(i+n, t, loc[i].cap);
} for(int i=1; i<=n; i++)
for(int j=1; j<=n; j++) if(dis[i][j]<=m)
addedge(i, j+n, inf); return Maxflow(s,t)>=sum;
} ll solve()
{
int sumn = 0, sumc = 0;
for(int i=1; i<=n; i++)
{
scanf("%d%d", &loc[i].num, &loc[i].cap);
sumn += loc[i].num;
sumc += loc[i].cap;
}
int u, v, w;
for(int i=1; i<=n; i++)
{
for(int j=1; j<=n; j++) dis[i][j] = INF;
dis[i][i] = 0;
}
for(int i=0; i<P; i++)
{
scanf("%d%d%d", &u, &v, &w);
if(w<dis[u][v]) dis[u][v] = dis[v][u] = w;
}
if(sumn > sumc) return -1;
floyd(); ll l = 0, r = 0, ans = -1;
for(int i=1; i<n; i++)
{
for(int j=i+1; j<=n; j++)
if(r<dis[i][j] && dis[i][j]!=INF) r = dis[i][j];
}
while(l<=r)
{
ll mid = (l+r)>>1;
if(is_ok(mid, sumn)) ans = mid, r = mid - 1;
else l = mid + 1;
// printf("ans = %d\n", ans);
}
return ans;
} int main()
{
// freopen("in", "r", stdin);
while(scanf("%d%d", &n, &P)>0) cout<<solve()<<endl;
return 0;
}

poj 2391 Ombrophobic Bovines(最大流+floyd+二分)的更多相关文章

  1. poj 2391 Ombrophobic Bovines, 最大流, 拆点, 二分, dinic, isap

    poj 2391 Ombrophobic Bovines, 最大流, 拆点, 二分 dinic /* * Author: yew1eb * Created Time: 2014年10月31日 星期五 ...

  2. POJ2391:Ombrophobic Bovines(最大流+Floyd+二分)

    Ombrophobic Bovines Time Limit: 1000MSMemory Limit: 65536K Total Submissions: 21660Accepted: 4658 题目 ...

  3. POJ 2391 Ombrophobic Bovines ( 经典最大流 && Floyd && 二分 && 拆点建图)

    题意 : 给出一些牛棚,每个牛棚都原本都有一些牛但是每个牛棚可以容纳的牛都是有限的,现在给出一些路与路的花费和牛棚拥有的牛和可以容纳牛的数量,要求最短能在多少时间内使得每头牛都有安身的牛棚.( 这里注 ...

  4. POJ 2391 Ombrophobic Bovines (Floyd + Dinic +二分)

    Ombrophobic Bovines Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 11651   Accepted: 2 ...

  5. POJ 2391 Ombrophobic Bovines

    Ombrophobic Bovines Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 18623   Accepted: 4 ...

  6. POJ 2391 Ombrophobic Bovines ★(Floyd+二分+拆点+最大流)

    [题意]有n块草地,一些奶牛在草地上吃草,草地间有m条路,一些草地上有避雨点,每个避雨点能容纳的奶牛是有限的,给出通过每条路的时间,问最少需要多少时间能让所有奶牛进入一个避雨点. 和POJ2112很类 ...

  7. POJ 2391 Ombrophobic Bovines (二分答案+floyd+最大流)

    <题目链接> 题目大意: 给定一个有$n$个顶点和$m$条边的无向图,点$i$ 处有$A_i$头牛,点$i$ 处的牛棚能容纳$B_i$头牛,每条边有一个时间花费$t_i$(表示从一个端点走 ...

  8. POJ 2391 Ombrophobic Bovines(Floyd+二分+最大流)

    题目链接 题意:农场有F(1 <= F <= 200)片草地用于放牛,这些草地有P(1 <= P <= 1500)连接,农场的草地上有一些避雨点,奶牛们可以在避雨点避雨,但是避 ...

  9. POJ 2391 Ombrophobic Bovines(二分+拆点+最大流)

    http://poj.org/problem?id=2391 题意: 给定一个无向图,点i处有Ai头牛,点i处的牛棚能容纳Bi头牛,求一个最短时间T,使得在T时间内所有的牛都能进到某一牛棚里去. 思路 ...

随机推荐

  1. [爬虫学习笔记]基于Bloom Filter的url去重模块UrlSeen

            Url Seen用来做url去重.对于一个大的爬虫系统,它可能已经有百亿或者千亿的url,新来一个url如何能快速的判断url是否已经出现过非常关键.因为大的爬虫系统可能一秒钟就会下载 ...

  2. jython 2.7 b3发布

    Jython 2.7b3 Bugs Fixed - [ 2108 ] Cannot set attribute to instances of AST/PythonTree (blocks pyfla ...

  3. PHP框架Swoole的一个定时器Timer特性

    在各种业务型系统中,往往需要服务器在后台扫描相关数据,触发相应的统计.通知等操作. 比如对于一个项目管理系统,需要每天的特定时间内,统计每项任务的执行.到期情况.整个项目的进度等等,根据统计情况,做相 ...

  4. mysql启动不起来了!

    [root@iZ28r2sl9qkZ data]# service mysqld restartMySQL server PID file could not be found! [FAILED]St ...

  5. ASP.NET 5新特性

    近期微软发布了ASP.NET 5.0,本次发布的新特性需求源于大量用户的反馈和需求,例如灵活的跨平台运行时和自主部署能力使ASP.NET应用不再受限于IIS.Cloud-ready环境配置降低了云端部 ...

  6. 文科生也能看懂的iptables教程(转载)

    据说还是个MM, 写得很通俗易懂, 还很诙谐, 原文:http://dallascao.com/cn/iptables-tutorial-for-newbies/ 对于斗胆开始玩vps的文科生来讲,i ...

  7. 趣味题:恺撒Caesar密码(c++实现)

    描述:Julius Caesar 生活在充满危险和阴谋的年代.为了生存,他首次发明了密码,用于军队的消息传递.假设你是Caesar 军团中的一名军官,需要把Caesar 发送的消息破译出来.并提供给你 ...

  8. viewport的一些事

    整理了下viewport的东西,用脑图画了下

  9. 最全的前端开发面试题及答案(js,css等等)

    点击链接 https://github.com/HerbertKarajan/Fe-Interview-questions 我会不断的更新...... 若想自己留着,可以fork一下. 如果觉得不错, ...

  10. SAP中关于用户IP信息的获取(转载)

    SAP中如何获取登录用户的IP? 或如何查看哪些IP登录到SAP中: 在Table: USR41中查看,具体字段的说明如下: MANDT   ---   ClientBNAME   ---   登录的 ...