水,坑。

#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
using namespace std;
const int MAXN = ;
struct node
{
int x;
int y;
}a[MAXN];
int s[MAXN];
bool cmp(node t1,node t2)
{
return t1.x<t2.x;
} int serch(int left, int right, int v)
{
int l, r, m;
l = left, r = right;
while(l <= r)
{
m = (l + r) / ;
if(v > s[m] && v < s[m])
return m;
else if(v > s[m])
l = m + ;
else r = m - ;
}
return l;
}
int main()
{
int n, i, j, ff=;
while(scanf("%d",&n)!=EOF)
{
memset(s, , sizeof(s));
for(i = ; i <= n; i++)
scanf("%d%d",&a[i].x,&a[i].y);
sort(a + , a + n + , cmp);
int len = ;
s[] = a[].y;
for(i = ; i <= n; i++)
{
int t = serch(, len, a[i].y);
if(t > len)
{
len ++;
s[len] = a[i].y;
}
else s[t]=a[i].y;
}
printf("Case %d:\n", ++ ff);
if(len==)
printf("My king, at most %d road can be built.\n",len);
else
printf("My king, at most %d roads can be built.\n",len);
cout<<endl;
}
}

hdu1025 最长上升子序列 (nlogn)的更多相关文章

  1. HDU 1025 Constructing Roads In JGShining's Kingdom(求最长上升子序列nlogn算法)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1025 解题报告:先把输入按照r从小到大的顺序排个序,然后就转化成了求p的最长上升子序列问题了,当然按p ...

  2. 【算法】最长公共子序列(nlogn)

    转载注明出处:http://blog.csdn.net/wdq347/article/details/9001005 (修正了一些错误,并自己重写了代码) 最长公共子序列(LCS)最常见的算法是时间复 ...

  3. [poj 1533]最长上升子序列nlogn树状数组

    题目链接:http://poj.org/problem?id=2533 其实这个题的数据范围n^2都可以过,只是为了练习一下nlogn的写法. 最长上升子序列的nlogn写法有两种,一种是变形的dp, ...

  4. HDU5748---(记录每个元素的 最长上升子序列 nlogn)

    分析: 给一个序列,求出每个位置结尾的最长上升子序列 O(n^2) 超时 #include "cstdio" #include "algorithm" #def ...

  5. 最长公共子序列 nlogn

    先来个板子 #include<bits/stdc++.h> using namespace std; , M = 1e6+, mod = 1e9+, inf = 1e9+; typedef ...

  6. DP练习 最长上升子序列nlogn解法

    openjudge 百练 2757:最长上升子序列 总时间限制:  2000ms 内存限制:  65536kB 描述 一个数的序列bi,当b1 < b2 < ... < bS的时候, ...

  7. NYOJ 214 最长上升子序列nlogn

    普通的思路是O(n2)的复杂度,这个题的数据量太大,超时,这时候就得用nlogn的复杂度的算法来做,这个算法的主要思想是只保存有效的序列,即最大递增子序列,然后最后得到数组的长度就是最大子序列.比如序 ...

  8. 最长上升子序列nlogn算法

    LIS问题是经典的动态规划问题,它的状态转移相信大家都很熟悉: f[i] = f[k] + 1  (k < i 且 A[k] < A[i]) 显然这样做复杂度是O(n^2) 有没有更快的算 ...

  9. 最长递增子序列nlogn的做法

    费了好大劲写完的  用线段树维护的 nlogn的做法再看了一下 大神们写的 nlogn  额差的好远我写的又多又慢  大神们写的又少又快时间  空间  代码量 哪个都赶不上大佬们的代码 //这是我写的 ...

随机推荐

  1. 【读书笔记《Android游戏编程之从零开始》】18.游戏开发基础(碰撞检测)

    1.矩形碰撞 所谓矩形碰撞,就是利用两个矩形之间的位置关系来进行判断,如果矩形的像素在另外一个矩形之中,或者之上都可以认为这两个矩形发生了碰撞. 如果单纯的去考虑哪些情况会判定两个矩形发生碰撞,倒不如 ...

  2. Floyd判最小环算法模板

    算法思想:如果存在最小环,会在编号最大的点u更新最短路径前找到这个环,发现的方法是,更新最短路径前,遍历i,j点对,一定会发现某对i到j的最短路径长度dis[i][j]+mp[j][u]+mp[u][ ...

  3. [反编译U3D]Decompile Unity Resources

    工具说明 反编译unity project资源文件,包括ios,android,pc等平台资源,仅供学习使用! 以下工具任选其一,未有特殊说明是可以同时提取unity3.x,unity4.x,unit ...

  4. 使用javascript获取url中的参数

    方法一: //取url参数 var type = request("type") function request() { var query = location.search; ...

  5. 基于PXC的MySQL高可用环境简单部署

    PXC简介 Percona XtraDB Cluster(简称PXC集群)提供了MySQL高可用的一种实现方法. 1.集群是有节点组成的,推荐配置至少3个节点,但是也可以运行在2个节点上. 2.每个节 ...

  6. 一篇文章告诉你为何GitHub估值能达20亿美元

    软件开发平台GitHub今日宣布,已获得硅谷多家知名风投2.5亿美元融资,这也让其融资总额达到了3.5亿美元,此轮融资对GitHub的估值约为20亿美元. GitHub有何特别之处? GitHub创立 ...

  7. WPF登陆窗口、主窗口切换问题

    代码 MainWindow mwin = new MainWindow(); Application.Current.MainWindow = mwin; this.Close(); mwin.Sho ...

  8. C# 无边框窗体的最小化问题

    WinForm在窗体风格设置成None时无法最小化的问题.添加以下代码即可实现最小化: protected override CreateParams CreateParams { get { con ...

  9. salt-ssh

    1.生产---测试--开发 salt-runners salt-run manage.status#显示当前up或down的minion salt-run manage.down salt-run m ...

  10. perl 简单学习,安装perl模块

    检查是否安装了某个perl模块 有多种方式 0.perldoc perlinstall 列出所有的模块及版本号 1. perl -M模块名 -e 1(模块名不加空格) 没有返回值则说明有此模块 2.p ...