【原】训练自己haar-like特征分类器并识别物体(2)
在上一篇文章中,我介绍了《训练自己的haar-like特征分类器并识别物体》的前两个步骤:
1.准备训练样本图片,包括正例及反例样本
2.生成样本描述文件
3.训练样本
4.目标识别
=================
今天我们将着重学习第3步:基于haar特征的adaboost级联分类器的训练。若将本步骤看做一个系统,则输入为正样本的描述文件(.vec)以及负样本的说明文件(.dat);输出为分类器配置参数文件(.xml)。
老规矩,先介绍一下这篇文章需要的工具,分别是(1)训练用的opencv_haartraining.exe,该程序封装了haar特征提取以及adaboost分类器训练过程;(2)haarconv.exe(老版本命名法)或者convert_cascade.exe(新版本命名法),该程序用于合并各级分类器成为最终的xml文件。一般这两个程序都能在opencv的工程文件里找到,请善用ctrl+F。若没有,则请到http://en.pudn.com/downloads204/sourcecode/graph/texture_mapping/detail958471_en.html 中下载opencv_haartraining.exe以及相应dll库,到http://mail.pudn.com/downloads554/sourcecode/graph/detail2285048.html 中下载haarconv.exe以及相应dll库。必备的dll库如下图所示,为了方便你可以将exe以及dll都拷贝出来。目录结构见结尾附图
工具都准备好了,下面进入正题:
1.训练分类器
打开cmd,cd到当前目录,运行命令:
opencv_haartraining.exe -data ./cascade -vec ./pos/sample_pos.vec -bg ./neg/sample_neg.dat -npos 20 -nneg 60 -mem 200 -mode ALL -w 20 -h 20
参数说明,这个要好好看,出错了好调试
-data 指定生成的文件目录,
-vec vec文件名,
-bg 负样本描述文件名称,也就是负样本的说明文件(.dat)
-nstage 指定训练层数,推荐15~,层数越高,耗时越长。
-nsplits 分裂子节点数目,选取默认值
-minhitrate 最小命中率,即训练目标准确度。
-maxfalsealarm最大虚警(误检率),每一层训练到这个值小于0.5时训练结束,进入下一层训练,
-npos 在每个阶段用来训练的正样本数目,
-nneg在每个阶段用来训练的负样本数目 这个值可以设置大于真正的负样本图像数目,程序可以自动从负样本图像中切割出和正样本大小一致的,这个参数一半设置为正样本数目的1~3倍 -w -h样本尺寸,与前面对应 -mem 程序可使用的内存,这个设置为256即可,实际运行时根本就不怎么耗内存,以MB为单位 -mode ALL指定haar特征的种类,BASIC仅仅使用垂直特征,ALL表示使用垂直以及45度旋转特征 -sym或者-nonsym,后面不用跟其他参数,用于指定目标对象是否垂直对称,若你的对象是垂直对称的,比如脸,则垂直对称有利于提高训练速度
其中要注意,负样本使用的是.dat文件,而不是.vec文件。训练结束后会在cascade目录下生成0-N的子目录。训练过程如下图,我的正样本20,负样本60,小试牛刀,毕竟数据量有限。

想让自己更强大,就应该知道这张图里面一些参数的意思。
BACKGROUNG PROCESSING TIME 是负样本切割时间,一般会占用很长的时间
N 为训练层数
%SMP 样本占总样本个数
ST.THR 阈值,
HR 击中率,
FA 虚警,只有当每一层训练的FA低于你的命令中声明的maxfalsealarm数值才会进入下一层训练
EXP.ERR 经验错误率
2.合并子分类器生成xml文件
输入命令:
haarconv.exe ./cascade haar_adaboost.xml 25 25
若你使用的是convert_cascade.exe则是另外一种格式:
convert_cascade.exe --size="20x20" ..\cascade haar_adaboost.xml
想知道用法可以输入xxx.exe usage,用法以及参数说明一目了然
3.总结以及注意事项
看起来很简单是不是,你错了!真正做起来会有各种各样的错误发生让你措手不及。以下是我总结的问题及分析:
1)训练时间非常久,少则秒钟,多则几天甚至一礼拜。具体的时间跟你样本的选取、样本数量、机器的性能有着直接联系。举个例子,有人正样本7097负样本2830,在8核3.2Ghz的机器上,开启了多核并行加速(MP)的情况下训练了一周时间,跑到19层。链接http://blog.csdn.net/liulina603/article/details/8197889 。这个真心有点久了,有点夸张。举这个例子是想跟你说明,这是一件耗时间的事情,所以请你耐心等待。
2)卡死在某一层,好像进入死循环。这种情况一般跟样本的选择有关,尤其是负样本。当剩下所有的negtive样本在临时的cascade Classifier中evaluate的结果都是0(也就是拒绝了),随机取样本的数目到几百万都是找不到误检测的neg样本了,因而没法跳出循环!
解决方法是,增大负样本数目,增大负样本之间的变化!
3)训练带某一层出错,报错提示下图。查看cascade目录下发现确实走到第5层。这种情况跟上一种情况其实有点类似,都是opencv_haartraining.exe无法正常terminate。而我们的关注点在于,所生成的这些子分类器能用吗?要依实际情况而定。拿下图来说,在第5层的时候FA已经很低了,0.125000,说明效果已经够用。2)中也是这个道理。


That`s all.
【原】训练自己haar-like特征分类器并识别物体(2)的更多相关文章
- 【原】训练自己的haar-like特征分类器并识别物体(3)
在前两篇文章中,我介绍了<训练自己的haar-like特征分类器并识别物体>的前三个步骤: 1.准备训练样本图片,包括正例及反例样本 2.生成样本描述文件 3.训练样本 4.目标识别 == ...
- 【原】训练自己haar-like特征分类器并识别物体(1)
本系列文章旨在学习如何在opencv中基于haar-like特征训练自己的分类器,并且用该分类器用于模式识别.该过程大致可以分为一下几个大步骤: 1.准备训练样本图片,包括正例及反例样本 2.生成样本 ...
- 使用OpenCV训练Haar like+Adaboost分类器的常见问题
<FAQ:OpenCV Haartraining>——使用OpenCV训练Haar like+Adaboost分类器的常见问题 最近使用OpenCV训练Haar like+Adaboost ...
- 【macOS】 在OpenCV下训练Haar特征分类器
本教程基于以下环境 macOS 10.12.6,OpenCV 3.3.0,python 3.6.由于网上基于masOS系统的教程太少,想出一篇相关教程造福大家-本文旨在学习如何在opencv中基于ha ...
- opencv - haar人脸特征的训练
step 1: 把正样品,负样品,opencv_createsamples,opencv_haartraining放到一个文件夹下面,利于后面的运行.step 2: 生成正负样品的描述文件 正样品描述 ...
- 【原/转】opencv的级联分类器训练与分类全程记录
众所周知,opencv下有自带的供人脸识别以及行人检测的分类器,也就是说已经有现成的xml文件供你用.如果我们不做人脸识别或者行人检测,而是想做点其他的目标检测该怎么做呢?答案自然是自己训练一个特定的 ...
- AdaBoost中利用Haar特征进行人脸识别算法分析与总结1——Haar特征与积分图
原地址:http://blog.csdn.net/watkinsong/article/details/7631241 目前因为做人脸识别的一个小项目,用到了AdaBoost的人脸识别算法,因为在网上 ...
- CNN基础二:使用预训练网络提取图像特征
上一节中,我们采用了一个自定义的网络结构,从头开始训练猫狗大战分类器,最终在使用图像增强的方式下得到了82%的验证准确率.但是,想要将深度学习应用于小型图像数据集,通常不会贸然采用复杂网络并且从头开始 ...
- Spark Mllib里如何将trainDara训练数据的分类特征字段转换为数值字段(图文详解)
不多说,直接上干货! 字段3 是分类特征字段,但是呢,在分类算法里不能直接用.所以,必须要转换为数值字段才能够被分类算法使用. 具体,见 Hadoop+Spark大数据巨量分析与机器学习整合开发实战的 ...
随机推荐
- 基于html5页面滚动背景图片动画效果
基于html5页面滚动背景图片动画效果是一款带索引按钮的页面滚动动画特效代码.效果图如下: 在线预览 源码下载 实现的代码. html代码: <div id="fullpage&q ...
- Tips3:通过Layer下拉菜单来锁定游戏物体和控制物体的可视化
通过把不同的游戏物体放在不同的Layer里面能对不同类的游戏物体进行很方便的控制,如果某些游戏物体创建后你不想再改动,如地面 装饰 什么的, 你可以通过点击Layer下拉菜单把它们锁定了 也可以通过控 ...
- Python单元测试框架之pytest -- fixtures
fixtures不太好翻译,可看作是夹心饼干最外层的两片饼干.通常用setup/teardown来表示.它主要用来包裹测试用例,为什么需要这样的饼干呢?我们以web自动化测试为例,例如,要测试的某系统 ...
- Android学习笔记之使用百度地图实现路线规划+公交信息检索
PS:装了个deepin,感觉真的很高大上. 学习内容: 1.公交信息检索 2.路线规划 关于百度地图的开发也就这么多了.重要的部分也就那么些.原本打算搞到poi搜索就算了,不过看到了这两个方面还 ...
- 从IE6到IE11上运行WebGL 3D遇到的各种坑
这篇<基于HTML5的电信网管3D机房监控应用>基于WebGL技术的应用让少同学对HTML5 3D的应用产生了兴趣和信心,但有不少网友私信询问WebGL如何运行在老的IE678910浏览器 ...
- IE11之F12 Developer Tools--控制台工具(Console)
前面我们介绍了IE11的Developer Tools中的第一个工具--DOM Explorer,这篇文章介绍第二个工具--控制台(Console),使用控制台工具查看错误和其他信息.发送调试输出.检 ...
- [Solution] 使用Autofac在MVC、Web API、WCF中实现IOC
本来想聊一下面试过程的,1个星期面了6家,4家当场给offer,2家技术通过(1家没下文,1家复试).从中也学习到一些东西,先还是继续Coding吧. 官网:http://autofac.org/ 下 ...
- where T : class的含义
public class Reflect<T> where T : class { 这是参数类型约束,指定T必须是Class类型. .NET支持的类型参数约束有以下五种:where T : ...
- KMP---Count the string
题目网址:http://acm.hust.edu.cn/vjudge/contest/view.action?cid=110060#problem/A Description It is well k ...
- jsp页面 列表 展示 ajax异步实现
1. 服务端先返回页面基本结构(如message.jsp), <%@ page language="java" contentType="text/html; ch ...