概念漂移

​ 概念漂移是数据流挖掘领域中一个重要的研究点。传统的机器学习算法在操作时通常假设数据是静态的,其数据分布不会随着时间发生变化。然而对于真实的数据流来说,由于数据流天生的时间性,到达的数据的分布可能会随着时间的推移不断改变。这使得传统的批处理模型不适合对数据流的进行挖掘分析,模型更是需要有检测和适应数据分布变化的能力。例如,在服装店销售预测的例子中,如果季节性因素导致服装销售额在夏季月份较高,那么在冬季该预测模型可能就不管用了。

​ 如果要对概念漂移下定义的话,它的定义是:概念漂移是一种现象,即目标领域的统计属性随着时间的推移以一种任意的方式变化。

​ 如果用一句话来描述概念漂移的话,它就是:数据分布不均匀,使得过去训练的表现不能保证将来的结果。

基于间隔密度的概念漂移检测算法mdm-DDM

背景

​ 参考论文:https://kns.cnki.net/kcms2/article/abstract?v=3uoqIhG8C475KOm_zrgu4lQARvep2SAkaWjBDt8_rTOnKA7PWSN5MEdRZ4_Punz3wA-1d-2-our_XnGz-hr7Ar5EH4I5MWNB&uniplatform=NZKPT

​ mdm-DDM解决了基于错误率的漂移检测算法必须及时获取标记数据标签的问题。mdm-DDM利用间隔密度作为检测漂移的度量,然后结合McDiarmid 不等式来进行显著性检验,以此判断是否产生概念漂移。

​ 本文只考虑了没有明确决策边界的mdm-DDM,在有标签情况下,用集成分类器来进行预测。

定义

  • 间隔区域

    • 预测空间中最容易分类错误的部分
  • 间隔密度
    • 分类器不确定区域中的样本密度,即具有不确定性的数据样本占总体样本的密度

间隔密度计算

  1. 对于每一个样本x来说:
\[margin = P_E(y = trueclass|x) - P_E(y \neq trueclass|x)
\]

​ 其中E指的是集成分类器。被减数指的是样本经过分类器预测后,集成分类器预测标签为样本标签的概率。减数的是样本经过分类器预测后,集成分类器预测标签不为样本标签的概率。

  1. 间隔密度的计算方式:
\[S_{(w,b)} = \begin{cases} 1,if\ margin \leq \theta_{margin\ of\ uncertainty}\\
0, 其他\end{cases}
\]
\[MD_{svm} = \frac{\sum{S_{(w,b)}(x)}}{|X|},\forall x\in X
\]

​ 其中是定义阈值,表示间隔区域,默认值为0.15,X 表示样本集,x 是样本集中的样本点,表示样本点距离决策面的距离。当样本点落入间隔区域,该样本点被Sign函数标为1,否则为0。MD表示间隔密度。

基于 McDiarmid 不等式的阈值设计

​ 当集成分类器的间隔密度开始以一种不寻常的方式增加的时候,概念漂移的可能性将会增加。因此随着数据流中的数据一个接一个的被处理,算法将不断更新,两个滑动窗口之间的加权平均值的显著差异意味着概念漂移的产生

​ 其中置信度δ的默认值为0.000001。

​ ε的计算公式如下:

\[\varepsilon_w = \sqrt{\frac{\sum_{i=1}^{n}{v^2_i}}{2}ln\frac{1}{\delta_w}}
\]

​ v的计算公式如下:

\[v_i = \frac{w_i}{\sum_{i=1}^{n}{w_i}}
\]

​ w表示滑动窗口中数据流实例中第i个数据的权重。由于数据流具有时效性这个特点,算法定义最近到来的数据应具有较高的权重,w < w+1,其中w表示第 i 个实例的权重。权重的计算方法如下:

\[w_i = 1 + (i-1)*d
\]

​ 权重随时间增加的d默认值为0.01。

漂移算法整体流程

基于间隔密度的概念漂移检测算法mdm-DDM的更多相关文章

  1. 基于模糊Choquet积分的目标检测算法

    本文根据论文:Fuzzy Integral for Moving Object Detection-FUZZ-IEEE_2008的内容及自己的理解而成,如果想了解更多细节,请参考原文.在背景建模中,我 ...

  2. 基于COCO数据集验证的目标检测算法天梯排行榜

    基于COCO数据集验证的目标检测算法天梯排行榜 AP50 Rank Model box AP AP50 Paper Code Result Year Tags 1 SwinV2-G (HTC++) 6 ...

  3. 每天进步一点点------Sobel算子(3)基于彩色图像边缘差分的运动目标检测算法

    摘  要: 针对目前常用的运动目标提取易受到噪声影响.易出现阴影和误检漏检等情况,提出了一种基于Sobel算子的彩色边缘图像检测和帧差分相结合的检测方法.首先用Sobel算子提取视频流中连续4帧图像的 ...

  4. 五种基于RGB色彩空间统计的皮肤检测算法

    最近一直在研究多脸谱识别以及如何分辨多个皮肤区域是否是人脸的问题 网上找了很多资料,看了很多篇文章,将其中基于RGB色彩空间识别皮肤 的统计算法做了一下总结,统计识别方法主要是简单相比与很多其它基于 ...

  5. Learning under Concept Drift: A Review 概念漂移综述论文阅读

    首先这是2018年一篇关于概念漂移综述的论文[1]. 最新的研究内容包括 (1)在非结构化和噪声数据集中怎么准确的检测概念漂移.how to accurately detect concept dri ...

  6. 基于候选区域的深度学习目标检测算法R-CNN,Fast R-CNN,Faster R-CNN

    参考文献 [1]Rich feature hierarchies for accurate object detection and semantic segmentation [2]Fast R-C ...

  7. 目标反射回波检测算法及其FPGA实现 之一:算法概述

    目标反射回波检测算法及其FPGA实现之一:算法概述 前段时间,接触了一个声呐目标反射回波检测的项目.声呐接收机要实现的核心功能是在含有大量噪声的反射回波中,识别出发射机发出的激励信号的回波.我会分几篇 ...

  8. kaggle信用卡欺诈看异常检测算法——无监督的方法包括: 基于统计的技术,如BACON *离群检测 多变量异常值检测 基于聚类的技术;监督方法: 神经网络 SVM 逻辑回归

    使用google翻译自:https://software.seek.intel.com/dealing-with-outliers 数据分析中的一项具有挑战性但非常重要的任务是处理异常值.我们通常将异 ...

  9. 基于Shading Model(对光照变化一定不变性)的运动目标检测算法

    光照模型(Shading Model)在很多论文中得到了广泛的应用,如robust and illumination invariant change detection based on linea ...

  10. 基于Adaboost的人脸检测算法

    AdaBoost算法是一种自适应的Boosting算法,基本思想是选取若干弱分类器,组合成强分类器.根据人脸的灰度分布特征,AdaBoost选用了Haar特征[38].AdaBoost分类器的构造过程 ...

随机推荐

  1. 一分钟学一个 Linux 命令 - tar

    前言 大家好,我是 god23bin.今天给大家带来的是 Linux 命令系列,每天只需一分钟,记住一个 Linux 命令不成问题.今天,我们要介绍的是一个常用且强大的命令:tar. 什么是 tar ...

  2. 深度学习应用篇-推荐系统[12]:经典模型-DeepFM模型、DSSM模型召回排序策略以及和其他模型对比

    深度学习应用篇-推荐系统[12]:经典模型-DeepFM模型.DSSM模型召回排序策略以及和其他模型对比 1.DeepFM模型 1.1.模型简介 CTR预估是目前推荐系统的核心技术,其目标是预估用户点 ...

  3. 【HarmonyOS】【ArkTS】如何使用HTTP网络请求获取动态数据刷新UI界面

    ​ [关键字] HttpRequest.ArkTS.网络数据请求.@ohos.net.http [前言] 在使用ArkTS开发HarmonyOS应用时,需要调用HTTP网络请求 @ohos.net.h ...

  4. 手写数字识别系统Python+CNN卷积神经网络算法【完整代码】

    一.介绍 手写数字识别系统,使用Python语言,基于TensorFlow搭建CNN卷积神经网络算法对数据集进行训练,最后得到模型,并基于FLask搭建网页端界面,基于Pyqt5搭建桌面端可视化界面. ...

  5. 有哪些ASIC加速技术可以实现低功耗运行?

    目录 文章主题: 10. 有哪些ASIC加速技术可以实现低功耗运行? 背景介绍:随着移动设备.物联网.云计算等应用场景的不断增长,功耗成为了一个日益重要的技术问题.为了在移动设备上实现更长时间的运行, ...

  6. UI自动化 --- UI Automation 基础详解

    引言 上一篇文章UI自动化 --- 微软UI Automation中,介绍了UI Automation能够做什么,且借助 Inspect.exe 工具完成了一个模拟点击操作的Demo,文章结尾也提出了 ...

  7. .NET表达式树

    IQueryable/IQueryable 和表达式树 IQueryable有两个组件 Expression:当前查询的组件的与语言和数据源无关的表示形式,以表达式树的形式表示. Provider:L ...

  8. 使用Python读取图片

    一.Python学习两大道具 1. dir()工具 作用:支持打开package,看到里面的工具函数 示例: (1) 输出torch库包含的函数 dir(torch) (2) 输出torch.AVG函 ...

  9. Windows系统使用Nginx部署Vue

    Nginx是什么? Nginx (engine x) 是一个高性能的HTTP和反向代理web服务器 ,同时也提供了IMAP/POP3/SMTP服务.Nginx是由伊戈尔·赛索耶夫为俄罗斯访问量第二的R ...

  10. 【Redis】模糊查询

    Redis模糊查询 1.支持的通配符*.?.[] 2.通配符* a.单个 * 模式 # 查询所有的key keys * b.双 * 模式,匹配任意多个字符 # key中含有rich的key keys ...