模型评估在统计学和机器学习中具有至关重要,它帮助我们主要目标是量化模型预测新数据的能力。

本篇主要介绍模型评估时,如何利用scikit-learn帮助我们快速进行各种偏差的分析。

1. **R² ** 分数

R² 分数(也叫决定系数),用于衡量模型预测的拟合优度,它表示模型中因变量的变异中,可由自变量解释的部分所占的比例。
接近1的话,表示模型能够很好地解释因变量的变异,接近0的话,则表示模型解释能力较差。

需要注意的是,虽然R² 分数是一个很有用的指标,但它也有一些局限性。
例如,当模型中自变量数量增加时,R² 分数可能会增加,即使这些自变量对因变量没有真正的解释力。
因此,在使用R² 分数评估模型时,还需要结合其他诊断指标和领域知识进行综合判断。

1.1. 计算公式

\(R^2(y, \hat{y}) = 1 - \frac{\sum_{i=1}^{n} (y_i - \hat{y}_i)^2}{\sum_{i=1}^{n} (y_i - \bar{y})^2}\) 且 \(\bar{y} = \frac{1}{n} \sum_{i=1}^{n} y_i\)
其中,\(n\)是样本数量,\(y_i\)是真实值,\(\hat{y_i}\)是预测值。

1.2. 使用示例

from sklearn.metrics import r2_score

y_true = [1, 2, 3, 4]

y_pred = [0, 1, 3, 5]
r2_score(y_true, y_pred)
# 结果: 0.4 y_pred = [0, 2, 3, 4]
r2_score(y_true, y_pred)
# 结果: 0.8

r2_score就是scikit-learn中用来计算 **R² 分数 **的函数。

2. 解释方差分数

解释方差分数Explained Variance Score,简称EVS),它用于量化模型对目标变量的解释程度。
解释方差分数比较高则表示模型能够较好地解释数据中的方差,即模型的预测与实际观测值较为接近。

需要注意的是,解释方差分数仅关注模型对方差的解释程度,并不直接反映预测的准确度。

2.1. 计算公式

\(explained\_{}variance(y, \hat{y}) = 1 - \frac{Var\{ y - \hat{y}\}}{Var\{y\}}\)
其中,\(y\)是真实值,\(\hat{y}\)是预测值。
\(Var\)表示计算方差,比如:\(Var{\{y\}} = \frac{1}{n} \sum_{i=1}^{n} (y_i - \bar{y})^2\)

2.2. 使用示例

from sklearn.metrics import explained_variance_score

y_true = [1, 2, 3, 4]

y_pred = [0, 1, 3, 5]
explained_variance_score(y_true, y_pred)
# 结果: 0.45 y_pred = [0, 2, 3, 4]
explained_variance_score(y_true, y_pred)
# 结果: 0.85

explained_variance_score就是scikit-learn中用来计算 **解释方差分数 **的函数。

3. Tweedie 偏差

Tweedie 偏差是一种用于评估广义线性模型的指标,它衡量了预测值与实际观测值之间的差异,并考虑了模型的方差结构和分布假设。

Tweedie 偏差根据Tweedie分布的定义而来,参数不同,表示不同的分布。
Tweedie 偏差较小,表示模型的预测与实际观测值之间的差异较小,即模型能够更好地拟合数据。

需要注意的是,在使用 Tweedie 偏差时,需要确保所选的 Tweedie 分布适合数据的特性,否则可能会导致不准确的评估结果。

3.1. 计算公式

\(\text{D}(y, \hat{y}) = \frac{1}{n}
\sum_{i=0}^{n - 1}
2\left(\frac{\max(y_i,0)^{2-p}}{(1-p)(2-p)}-
\frac{y_i\,\hat{y}_i^{1-p}}{1-p}+\frac{\hat{y}_i^{2-p}}{2-p}\right)\)
其中,\(n\)是样本数量,\(y_i\)是真实值,\(\hat{y_i}\)是预测值。

上面的公式中,\(p=0\)时,Tweedie 偏差相当于均方误差
\(\text{D}(y, \hat{y}) = \frac{1}{n}
\sum_{i=0}^{n - 1} (y_i-\hat{y}_i)^2\)

当 \(p=1\)时,Tweedie 偏差相当于平均泊松偏差
\(\text{D}(y, \hat{y}) = \frac{1}{n}
\sum_{i=0}^{n - 1} 2(y_i \log(y_i/\hat{y}_i) + \hat{y}_i - y_i)\)

当 \(p=2\)时,Tweedie 偏差相当于平均Gamma偏差
\(\text{D}(y, \hat{y}) = \frac{1}{n}
\sum_{i=0}^{n - 1} 2(\log(\hat{y}_i/y_i) + y_i/\hat{y}_i - 1)\)

3.2. 使用示例

from sklearn.metrics import mean_tweedie_deviance

mean_tweedie_deviance([1], [2], power=0)
# 运行结果: 1.0
mean_tweedie_deviance([100], [200], power=0)
# 运行结果: 10000.0 mean_tweedie_deviance([1], [2], power=1)
# 运行结果: 0.6137056388801092
mean_tweedie_deviance([100], [200], power=1)
# 运行结果: 61.370563888010906 mean_tweedie_deviance([1], [2], power=2)
# 运行结果: 0.3862943611198908
mean_tweedie_deviance([100], [200], power=2)
# 运行结果: 0.3862943611198908

power参数不同,同样是预测值和实际值差两倍的情况下,不同分布,Tweedie 偏差的结果差别很大。

4. 总结

总之,scikit-learn中提供的回归模型偏差的计算方式,能够帮助我们了解模型的性能、选择适合的模型、优化模型以及辅助决策。
对于回归问题的建模和预测具有重要的实际意义。

【scikit-learn基础】--『回归模型评估』之偏差分析的更多相关文章

  1. (原创)(四)机器学习笔记之Scikit Learn的Logistic回归初探

    目录 5.3 使用LogisticRegressionCV进行正则化的 Logistic Regression 参数调优 一.Scikit Learn中有关logistics回归函数的介绍 1. 交叉 ...

  2. 机器学习之路:python 集成回归模型 随机森林回归RandomForestRegressor 极端随机森林回归ExtraTreesRegressor GradientBoostingRegressor回归 预测波士顿房价

    python3 学习机器学习api 使用了三种集成回归模型 git: https://github.com/linyi0604/MachineLearning 代码: from sklearn.dat ...

  3. Poisson回归模型

    Poisson回归模型也是用来分析列联表和分类数据的一种方法,它实际上也是对数线性模型的一种,不同点是对数线性模型假定频数分布为多项式分布,而泊松回归模型假定频数分布为泊松分布. 首先我们来认识一下泊 ...

  4. (原创)(三)机器学习笔记之Scikit Learn的线性回归模型初探

    一.Scikit Learn中使用estimator三部曲 1. 构造estimator 2. 训练模型:fit 3. 利用模型进行预测:predict 二.模型评价 模型训练好后,度量模型拟合效果的 ...

  5. 逻辑回归模型(Logistic Regression, LR)基础

    逻辑回归模型(Logistic Regression, LR)基础   逻辑回归(Logistic Regression, LR)模型其实仅在线性回归的基础上,套用了一个逻辑函数,但也就由于这个逻辑函 ...

  6. 『高性能模型』轻量级网络ShuffleNet_v1及v2

    项目实现:GitHub 参考博客:CNN模型之ShuffleNet v1论文:ShuffleNet: An Extremely Efficient Convolutional Neural Netwo ...

  7. 回归模型效果评估系列1-QQ图

    (erbqi)导语 QQ图全称 Quantile-Quantile图,也就是分位数-分位数图,简单理解就是把两个分布相同分位数的值,构成点(x,y)绘图:如果两个分布很接近,那个点(x,y)会分布在y ...

  8. 『高性能模型』HetConv: HeterogeneousKernel-BasedConvolutionsforDeepCNNs

    论文地址:HetConv 一.现有网络加速技术 1.卷积加速技术 作者对已有的新型卷积划分如下:标准卷积.Depthwise 卷积.Pointwise 卷积.群卷积(相关介绍见『高性能模型』深度可分离 ...

  9. 『高性能模型』轻量级网络MobileNet_v2

    论文地址:MobileNetV2: Inverted Residuals and Linear Bottlenecks 前文链接:『高性能模型』深度可分离卷积和MobileNet_v1 一.Mobil ...

  10. 20165308『网络对抗技术』Exp5 MSF基础应用

    20165308『网络对抗技术』Exp5 MSF基础应用 一.原理与实践说明 实践内容 本实践目标是掌握metasploit的基本应用方式,重点常用的三种攻击方式的思路.具体需要完成: 一个主动攻击实 ...

随机推荐

  1. CVE-2022-39197 复现

    CVE-2022-39197 ️漏洞介绍 Cobalt Strike (CS) 是一个为对手模拟和红队行动而设计的平台,相当于增强版的Armitage,早期以Metasploit为基础框架,3.0版本 ...

  2. Python——第五章:json模块

    什么是json: json 模块是用于处理 JSON(JavaScript Object Notation)数据的模块,翻译过来叫js对象简谱.JSON是一种轻量级的数据交换格式,常用于将数据在不同语 ...

  3. C# 多线程 progressbar 界面不卡顿简单用法

    多线程进度条的简单使用,界面不卡顿.如下图: 简单源码如下: using System; using System.Collections.Generic; using System.Componen ...

  4. 拓扑排序软件设计——ToplogicalSort_app(含有源码、需求分析、可行性分析、概要设计、用户使用手册)

    @ 目录 前言 1. 需求分析 2. 可行性分析 2.1 简介 2.2 技术可行性分析 2.2.1 技术实现方案 2.2.2 开发人员技能要求 2.2.3 可行性 2.3 操作可行性分析 2.4 结论 ...

  5. Cesium案例解析(七)——Layers在线地图服务

    目录 1. 概述 2. 案例 2.1. Blue Marble 2.2. ArcGIS地形 2.3. Cesium地形 2.4. Natural Earth II 2.5. Earth at Nigh ...

  6. Windows下编译64位CGAL

    目录 1. 准备 2. CMake构建 1. 准备 CGAL的官网准备了压缩包和安装程序两种类型的的源代码,推荐使用安装程序包,因为其中自带了编译好的gmp和mpfr库.gmp和mpfr是CGAL的依 ...

  7. 华为云GaussDB助力工商银行、华夏银行斩获“十佳卓越实践奖”

    近日,2023金融街论坛年会在北京成功举办.活动期间,由北京金融科技产业联盟举办的全球金融科技大会系列活动--分布式数据库金融应用研究与实践大赛获奖结果正式公布.其中,由华为云GaussDB参与支持的 ...

  8. 传统到敏捷的转型中,谁更适合做Scrum Master?

    摘要:本文主要讲述的是从传统到敏捷Scrum团队转型中,对Scrum Master这一角色的分析. 本文分享自华为云社区<传统到敏捷的转型中,谁更适合做Scrum Master?>,作者: ...

  9. 云图说丨初识数据工坊DWR

    摘要:数据工坊DWR是一款近数据处理服务,通过易用的工作流编排和开放生态的数据处理算子,能够在云上实现图像.视频.文档.图片等数据处理业务. 本文分享自华为云社区<[云图说]第236期 初识数据 ...

  10. pip升级和卸载安装的第三方库

    pip install --upgrade 第三方库名 pip uninstall 第三方库名