模型评估在统计学和机器学习中具有至关重要,它帮助我们主要目标是量化模型预测新数据的能力。

本篇主要介绍模型评估时,如何利用scikit-learn帮助我们快速进行各种偏差的分析。

1. **R² ** 分数

R² 分数(也叫决定系数),用于衡量模型预测的拟合优度,它表示模型中因变量的变异中,可由自变量解释的部分所占的比例。
接近1的话,表示模型能够很好地解释因变量的变异,接近0的话,则表示模型解释能力较差。

需要注意的是,虽然R² 分数是一个很有用的指标,但它也有一些局限性。
例如,当模型中自变量数量增加时,R² 分数可能会增加,即使这些自变量对因变量没有真正的解释力。
因此,在使用R² 分数评估模型时,还需要结合其他诊断指标和领域知识进行综合判断。

1.1. 计算公式

\(R^2(y, \hat{y}) = 1 - \frac{\sum_{i=1}^{n} (y_i - \hat{y}_i)^2}{\sum_{i=1}^{n} (y_i - \bar{y})^2}\) 且 \(\bar{y} = \frac{1}{n} \sum_{i=1}^{n} y_i\)
其中,\(n\)是样本数量,\(y_i\)是真实值,\(\hat{y_i}\)是预测值。

1.2. 使用示例

from sklearn.metrics import r2_score

y_true = [1, 2, 3, 4]

y_pred = [0, 1, 3, 5]
r2_score(y_true, y_pred)
# 结果: 0.4 y_pred = [0, 2, 3, 4]
r2_score(y_true, y_pred)
# 结果: 0.8

r2_score就是scikit-learn中用来计算 **R² 分数 **的函数。

2. 解释方差分数

解释方差分数Explained Variance Score,简称EVS),它用于量化模型对目标变量的解释程度。
解释方差分数比较高则表示模型能够较好地解释数据中的方差,即模型的预测与实际观测值较为接近。

需要注意的是,解释方差分数仅关注模型对方差的解释程度,并不直接反映预测的准确度。

2.1. 计算公式

\(explained\_{}variance(y, \hat{y}) = 1 - \frac{Var\{ y - \hat{y}\}}{Var\{y\}}\)
其中,\(y\)是真实值,\(\hat{y}\)是预测值。
\(Var\)表示计算方差,比如:\(Var{\{y\}} = \frac{1}{n} \sum_{i=1}^{n} (y_i - \bar{y})^2\)

2.2. 使用示例

from sklearn.metrics import explained_variance_score

y_true = [1, 2, 3, 4]

y_pred = [0, 1, 3, 5]
explained_variance_score(y_true, y_pred)
# 结果: 0.45 y_pred = [0, 2, 3, 4]
explained_variance_score(y_true, y_pred)
# 结果: 0.85

explained_variance_score就是scikit-learn中用来计算 **解释方差分数 **的函数。

3. Tweedie 偏差

Tweedie 偏差是一种用于评估广义线性模型的指标,它衡量了预测值与实际观测值之间的差异,并考虑了模型的方差结构和分布假设。

Tweedie 偏差根据Tweedie分布的定义而来,参数不同,表示不同的分布。
Tweedie 偏差较小,表示模型的预测与实际观测值之间的差异较小,即模型能够更好地拟合数据。

需要注意的是,在使用 Tweedie 偏差时,需要确保所选的 Tweedie 分布适合数据的特性,否则可能会导致不准确的评估结果。

3.1. 计算公式

\(\text{D}(y, \hat{y}) = \frac{1}{n}
\sum_{i=0}^{n - 1}
2\left(\frac{\max(y_i,0)^{2-p}}{(1-p)(2-p)}-
\frac{y_i\,\hat{y}_i^{1-p}}{1-p}+\frac{\hat{y}_i^{2-p}}{2-p}\right)\)
其中,\(n\)是样本数量,\(y_i\)是真实值,\(\hat{y_i}\)是预测值。

上面的公式中,\(p=0\)时,Tweedie 偏差相当于均方误差
\(\text{D}(y, \hat{y}) = \frac{1}{n}
\sum_{i=0}^{n - 1} (y_i-\hat{y}_i)^2\)

当 \(p=1\)时,Tweedie 偏差相当于平均泊松偏差
\(\text{D}(y, \hat{y}) = \frac{1}{n}
\sum_{i=0}^{n - 1} 2(y_i \log(y_i/\hat{y}_i) + \hat{y}_i - y_i)\)

当 \(p=2\)时,Tweedie 偏差相当于平均Gamma偏差
\(\text{D}(y, \hat{y}) = \frac{1}{n}
\sum_{i=0}^{n - 1} 2(\log(\hat{y}_i/y_i) + y_i/\hat{y}_i - 1)\)

3.2. 使用示例

from sklearn.metrics import mean_tweedie_deviance

mean_tweedie_deviance([1], [2], power=0)
# 运行结果: 1.0
mean_tweedie_deviance([100], [200], power=0)
# 运行结果: 10000.0 mean_tweedie_deviance([1], [2], power=1)
# 运行结果: 0.6137056388801092
mean_tweedie_deviance([100], [200], power=1)
# 运行结果: 61.370563888010906 mean_tweedie_deviance([1], [2], power=2)
# 运行结果: 0.3862943611198908
mean_tweedie_deviance([100], [200], power=2)
# 运行结果: 0.3862943611198908

power参数不同,同样是预测值和实际值差两倍的情况下,不同分布,Tweedie 偏差的结果差别很大。

4. 总结

总之,scikit-learn中提供的回归模型偏差的计算方式,能够帮助我们了解模型的性能、选择适合的模型、优化模型以及辅助决策。
对于回归问题的建模和预测具有重要的实际意义。

【scikit-learn基础】--『回归模型评估』之偏差分析的更多相关文章

  1. (原创)(四)机器学习笔记之Scikit Learn的Logistic回归初探

    目录 5.3 使用LogisticRegressionCV进行正则化的 Logistic Regression 参数调优 一.Scikit Learn中有关logistics回归函数的介绍 1. 交叉 ...

  2. 机器学习之路:python 集成回归模型 随机森林回归RandomForestRegressor 极端随机森林回归ExtraTreesRegressor GradientBoostingRegressor回归 预测波士顿房价

    python3 学习机器学习api 使用了三种集成回归模型 git: https://github.com/linyi0604/MachineLearning 代码: from sklearn.dat ...

  3. Poisson回归模型

    Poisson回归模型也是用来分析列联表和分类数据的一种方法,它实际上也是对数线性模型的一种,不同点是对数线性模型假定频数分布为多项式分布,而泊松回归模型假定频数分布为泊松分布. 首先我们来认识一下泊 ...

  4. (原创)(三)机器学习笔记之Scikit Learn的线性回归模型初探

    一.Scikit Learn中使用estimator三部曲 1. 构造estimator 2. 训练模型:fit 3. 利用模型进行预测:predict 二.模型评价 模型训练好后,度量模型拟合效果的 ...

  5. 逻辑回归模型(Logistic Regression, LR)基础

    逻辑回归模型(Logistic Regression, LR)基础   逻辑回归(Logistic Regression, LR)模型其实仅在线性回归的基础上,套用了一个逻辑函数,但也就由于这个逻辑函 ...

  6. 『高性能模型』轻量级网络ShuffleNet_v1及v2

    项目实现:GitHub 参考博客:CNN模型之ShuffleNet v1论文:ShuffleNet: An Extremely Efficient Convolutional Neural Netwo ...

  7. 回归模型效果评估系列1-QQ图

    (erbqi)导语 QQ图全称 Quantile-Quantile图,也就是分位数-分位数图,简单理解就是把两个分布相同分位数的值,构成点(x,y)绘图:如果两个分布很接近,那个点(x,y)会分布在y ...

  8. 『高性能模型』HetConv: HeterogeneousKernel-BasedConvolutionsforDeepCNNs

    论文地址:HetConv 一.现有网络加速技术 1.卷积加速技术 作者对已有的新型卷积划分如下:标准卷积.Depthwise 卷积.Pointwise 卷积.群卷积(相关介绍见『高性能模型』深度可分离 ...

  9. 『高性能模型』轻量级网络MobileNet_v2

    论文地址:MobileNetV2: Inverted Residuals and Linear Bottlenecks 前文链接:『高性能模型』深度可分离卷积和MobileNet_v1 一.Mobil ...

  10. 20165308『网络对抗技术』Exp5 MSF基础应用

    20165308『网络对抗技术』Exp5 MSF基础应用 一.原理与实践说明 实践内容 本实践目标是掌握metasploit的基本应用方式,重点常用的三种攻击方式的思路.具体需要完成: 一个主动攻击实 ...

随机推荐

  1. Bean named ‘xxxxxx‘ is expected to be of type ‘x‘ but was actually of type ‘com.sun.proxy.$Proxy112‘

    Bean named 'instanceService' is expected to be of type 'awb.operations.service.instance.InstanceServ ...

  2. CSS3学习笔记引言

    开始我们要来介绍css: CSS(全称为Cascading Style Sheets)是一种用于描述HTML.XML等文档样式的样式语言,它能够定义元素的显示方式,如字体.颜色.布局等. CSS可以把 ...

  3. 使用XDT提高开发效率

    使用XDT提高开发效率 XDT介绍 XDT(XML Document Transformation)技术是一种用于对XML文档进行转换的技术.它通常用于在部署或配置过程中,根据不同的环境或条件自动修改 ...

  4. 面试官让列举Spring的事务会失效的场景,我说了8个

    本文分享自华为云社区<哪些场景下Spring的事务会失效?>,作者:冰 河 . 在日常工作中,如果对Spring的事务管理功能使用不当,则会造成Spring事务不生效的问题.而针对Spri ...

  5. 物联网通信技术最全科普!你一定要了解的NB-IoT

    摘要: NB-IoT(窄带蜂窝物联网)产业正在迅速崛起. 我们这一期的文章主要是普及一些NB-IoT通信技术的相关知识点.也希望你能get到属于自己的知识盲点! 一.前言 NB-IoT(窄带蜂窝物联网 ...

  6. 华为云 UCS GitOps:轻松交付多集群云原生应用

    摘要:使用华为云 UCS GitOps 配置管理来交付您的多云应用. 本文分享自华为云社区<华为云 UCS GitOps:轻松交付多集群云原生应用>,作者:华为云云原生团队. 随着业务的全 ...

  7. GaussDB(for Redis)揭秘:Redis存算分离架构最全解析

    前言: 本文根据华为云NoSQL数据库架构师余汶龙,在今年的中国系统架构师大会SACC上的演讲整理而成,内容如下. 本次分享的大纲分成如下四个部分: 什么是GaussDB(for Redis)? 为什 ...

  8. 十大 CI/CD 安全风险(一)

    CI/CD 环境.流程和系统是现代软件组织的核心.他们将代码从开发工程师的工作站传递到生产环境.结合 DevOps 和微服务架构的兴起,CI/CD 系统和流程重塑了工程生态系统: 技术堆栈更加多样化, ...

  9. 火山引擎 DataTester 上线全新 MAB 智能调优实验

    更多技术交流.求职机会,欢迎关注字节跳动数据平台微信公众号,回复[1]进入官方交流群 近期 DataTester 上线了 MAB 智能调优实验功能,希望通过智能化.自动化的 A/B 实验形式,帮助业务 ...

  10. Python办公自动化_Excel篇

    Python办公自动化_Excel篇 库名 作用 xlrd 从excel中读取数据,支持xls,xlsx xlwt 从excel进行修改操作,不支持对xlsx格式的修改 xlutils 在xlrd和x ...