【scikit-learn基础】--『回归模型评估』之偏差分析
模型评估在统计学和机器学习中具有至关重要,它帮助我们主要目标是量化模型预测新数据的能力。
本篇主要介绍模型评估时,如何利用scikit-learn帮助我们快速进行各种偏差的分析。
1. **R² ** 分数
R² 分数(也叫决定系数),用于衡量模型预测的拟合优度,它表示模型中因变量的变异中,可由自变量解释的部分所占的比例。
R² 值接近1的话,表示模型能够很好地解释因变量的变异,接近0的话,则表示模型解释能力较差。
需要注意的是,虽然R² 分数是一个很有用的指标,但它也有一些局限性。
例如,当模型中自变量数量增加时,R² 分数可能会增加,即使这些自变量对因变量没有真正的解释力。
因此,在使用R² 分数评估模型时,还需要结合其他诊断指标和领域知识进行综合判断。
1.1. 计算公式
\(R^2(y, \hat{y}) = 1 - \frac{\sum_{i=1}^{n} (y_i - \hat{y}_i)^2}{\sum_{i=1}^{n} (y_i - \bar{y})^2}\) 且 \(\bar{y} = \frac{1}{n} \sum_{i=1}^{n} y_i\)
其中,\(n\)是样本数量,\(y_i\)是真实值,\(\hat{y_i}\)是预测值。
1.2. 使用示例
from sklearn.metrics import r2_score
y_true = [1, 2, 3, 4]
y_pred = [0, 1, 3, 5]
r2_score(y_true, y_pred)
# 结果: 0.4
y_pred = [0, 2, 3, 4]
r2_score(y_true, y_pred)
# 结果: 0.8
r2_score就是scikit-learn中用来计算 **R² 分数 **的函数。
2. 解释方差分数
解释方差分数(Explained Variance Score,简称EVS),它用于量化模型对目标变量的解释程度。
解释方差分数比较高则表示模型能够较好地解释数据中的方差,即模型的预测与实际观测值较为接近。
需要注意的是,解释方差分数仅关注模型对方差的解释程度,并不直接反映预测的准确度。
2.1. 计算公式
\(explained\_{}variance(y, \hat{y}) = 1 - \frac{Var\{ y - \hat{y}\}}{Var\{y\}}\)
其中,\(y\)是真实值,\(\hat{y}\)是预测值。
\(Var\)表示计算方差,比如:\(Var{\{y\}} = \frac{1}{n} \sum_{i=1}^{n} (y_i - \bar{y})^2\)
2.2. 使用示例
from sklearn.metrics import explained_variance_score
y_true = [1, 2, 3, 4]
y_pred = [0, 1, 3, 5]
explained_variance_score(y_true, y_pred)
# 结果: 0.45
y_pred = [0, 2, 3, 4]
explained_variance_score(y_true, y_pred)
# 结果: 0.85
explained_variance_score就是scikit-learn中用来计算 **解释方差分数 **的函数。
3. Tweedie 偏差
Tweedie 偏差是一种用于评估广义线性模型的指标,它衡量了预测值与实际观测值之间的差异,并考虑了模型的方差结构和分布假设。
Tweedie 偏差根据Tweedie分布的定义而来,参数不同,表示不同的分布。
Tweedie 偏差较小,表示模型的预测与实际观测值之间的差异较小,即模型能够更好地拟合数据。
需要注意的是,在使用 Tweedie 偏差时,需要确保所选的 Tweedie 分布适合数据的特性,否则可能会导致不准确的评估结果。
3.1. 计算公式
\(\text{D}(y, \hat{y}) = \frac{1}{n}
\sum_{i=0}^{n - 1}
2\left(\frac{\max(y_i,0)^{2-p}}{(1-p)(2-p)}-
\frac{y_i\,\hat{y}_i^{1-p}}{1-p}+\frac{\hat{y}_i^{2-p}}{2-p}\right)\)
其中,\(n\)是样本数量,\(y_i\)是真实值,\(\hat{y_i}\)是预测值。
上面的公式中,\(p=0\)时,Tweedie 偏差相当于均方误差:
\(\text{D}(y, \hat{y}) = \frac{1}{n}
\sum_{i=0}^{n - 1} (y_i-\hat{y}_i)^2\)
当 \(p=1\)时,Tweedie 偏差相当于平均泊松偏差:
\(\text{D}(y, \hat{y}) = \frac{1}{n}
\sum_{i=0}^{n - 1} 2(y_i \log(y_i/\hat{y}_i) + \hat{y}_i - y_i)\)
当 \(p=2\)时,Tweedie 偏差相当于平均Gamma偏差:
\(\text{D}(y, \hat{y}) = \frac{1}{n}
\sum_{i=0}^{n - 1} 2(\log(\hat{y}_i/y_i) + y_i/\hat{y}_i - 1)\)
3.2. 使用示例
from sklearn.metrics import mean_tweedie_deviance
mean_tweedie_deviance([1], [2], power=0)
# 运行结果: 1.0
mean_tweedie_deviance([100], [200], power=0)
# 运行结果: 10000.0
mean_tweedie_deviance([1], [2], power=1)
# 运行结果: 0.6137056388801092
mean_tweedie_deviance([100], [200], power=1)
# 运行结果: 61.370563888010906
mean_tweedie_deviance([1], [2], power=2)
# 运行结果: 0.3862943611198908
mean_tweedie_deviance([100], [200], power=2)
# 运行结果: 0.3862943611198908
power参数不同,同样是预测值和实际值差两倍的情况下,不同分布,Tweedie 偏差的结果差别很大。
4. 总结
总之,scikit-learn中提供的回归模型偏差的计算方式,能够帮助我们了解模型的性能、选择适合的模型、优化模型以及辅助决策。
对于回归问题的建模和预测具有重要的实际意义。
【scikit-learn基础】--『回归模型评估』之偏差分析的更多相关文章
- (原创)(四)机器学习笔记之Scikit Learn的Logistic回归初探
目录 5.3 使用LogisticRegressionCV进行正则化的 Logistic Regression 参数调优 一.Scikit Learn中有关logistics回归函数的介绍 1. 交叉 ...
- 机器学习之路:python 集成回归模型 随机森林回归RandomForestRegressor 极端随机森林回归ExtraTreesRegressor GradientBoostingRegressor回归 预测波士顿房价
python3 学习机器学习api 使用了三种集成回归模型 git: https://github.com/linyi0604/MachineLearning 代码: from sklearn.dat ...
- Poisson回归模型
Poisson回归模型也是用来分析列联表和分类数据的一种方法,它实际上也是对数线性模型的一种,不同点是对数线性模型假定频数分布为多项式分布,而泊松回归模型假定频数分布为泊松分布. 首先我们来认识一下泊 ...
- (原创)(三)机器学习笔记之Scikit Learn的线性回归模型初探
一.Scikit Learn中使用estimator三部曲 1. 构造estimator 2. 训练模型:fit 3. 利用模型进行预测:predict 二.模型评价 模型训练好后,度量模型拟合效果的 ...
- 逻辑回归模型(Logistic Regression, LR)基础
逻辑回归模型(Logistic Regression, LR)基础 逻辑回归(Logistic Regression, LR)模型其实仅在线性回归的基础上,套用了一个逻辑函数,但也就由于这个逻辑函 ...
- 『高性能模型』轻量级网络ShuffleNet_v1及v2
项目实现:GitHub 参考博客:CNN模型之ShuffleNet v1论文:ShuffleNet: An Extremely Efficient Convolutional Neural Netwo ...
- 回归模型效果评估系列1-QQ图
(erbqi)导语 QQ图全称 Quantile-Quantile图,也就是分位数-分位数图,简单理解就是把两个分布相同分位数的值,构成点(x,y)绘图:如果两个分布很接近,那个点(x,y)会分布在y ...
- 『高性能模型』HetConv: HeterogeneousKernel-BasedConvolutionsforDeepCNNs
论文地址:HetConv 一.现有网络加速技术 1.卷积加速技术 作者对已有的新型卷积划分如下:标准卷积.Depthwise 卷积.Pointwise 卷积.群卷积(相关介绍见『高性能模型』深度可分离 ...
- 『高性能模型』轻量级网络MobileNet_v2
论文地址:MobileNetV2: Inverted Residuals and Linear Bottlenecks 前文链接:『高性能模型』深度可分离卷积和MobileNet_v1 一.Mobil ...
- 20165308『网络对抗技术』Exp5 MSF基础应用
20165308『网络对抗技术』Exp5 MSF基础应用 一.原理与实践说明 实践内容 本实践目标是掌握metasploit的基本应用方式,重点常用的三种攻击方式的思路.具体需要完成: 一个主动攻击实 ...
随机推荐
- CVE-2022-39197 复现
CVE-2022-39197 ️漏洞介绍 Cobalt Strike (CS) 是一个为对手模拟和红队行动而设计的平台,相当于增强版的Armitage,早期以Metasploit为基础框架,3.0版本 ...
- Python——第五章:json模块
什么是json: json 模块是用于处理 JSON(JavaScript Object Notation)数据的模块,翻译过来叫js对象简谱.JSON是一种轻量级的数据交换格式,常用于将数据在不同语 ...
- C# 多线程 progressbar 界面不卡顿简单用法
多线程进度条的简单使用,界面不卡顿.如下图: 简单源码如下: using System; using System.Collections.Generic; using System.Componen ...
- 拓扑排序软件设计——ToplogicalSort_app(含有源码、需求分析、可行性分析、概要设计、用户使用手册)
@ 目录 前言 1. 需求分析 2. 可行性分析 2.1 简介 2.2 技术可行性分析 2.2.1 技术实现方案 2.2.2 开发人员技能要求 2.2.3 可行性 2.3 操作可行性分析 2.4 结论 ...
- Cesium案例解析(七)——Layers在线地图服务
目录 1. 概述 2. 案例 2.1. Blue Marble 2.2. ArcGIS地形 2.3. Cesium地形 2.4. Natural Earth II 2.5. Earth at Nigh ...
- Windows下编译64位CGAL
目录 1. 准备 2. CMake构建 1. 准备 CGAL的官网准备了压缩包和安装程序两种类型的的源代码,推荐使用安装程序包,因为其中自带了编译好的gmp和mpfr库.gmp和mpfr是CGAL的依 ...
- 华为云GaussDB助力工商银行、华夏银行斩获“十佳卓越实践奖”
近日,2023金融街论坛年会在北京成功举办.活动期间,由北京金融科技产业联盟举办的全球金融科技大会系列活动--分布式数据库金融应用研究与实践大赛获奖结果正式公布.其中,由华为云GaussDB参与支持的 ...
- 传统到敏捷的转型中,谁更适合做Scrum Master?
摘要:本文主要讲述的是从传统到敏捷Scrum团队转型中,对Scrum Master这一角色的分析. 本文分享自华为云社区<传统到敏捷的转型中,谁更适合做Scrum Master?>,作者: ...
- 云图说丨初识数据工坊DWR
摘要:数据工坊DWR是一款近数据处理服务,通过易用的工作流编排和开放生态的数据处理算子,能够在云上实现图像.视频.文档.图片等数据处理业务. 本文分享自华为云社区<[云图说]第236期 初识数据 ...
- pip升级和卸载安装的第三方库
pip install --upgrade 第三方库名 pip uninstall 第三方库名