1、简述

  在高并发的场景下,大量的请求直接访问Mysql很容易造成性能问题。所以,我们都会用Redis来做数据的缓存,削减对数据库的请求。但是,Mysql和Redis是两种不同的数据库,如何保证不同数据库之间数据的一致性就非常关键了。

1.1、数据不一致原因:

1、在高并发的业务场景下,数据库大多数情况都是用户并发访问最薄弱的环节。
2、所以,就需要使用redis做一个缓冲操作,让请求先访问到redis,而不是直接访问MySQL等数据库。
3、读取缓存步骤一般没有什么问题,但是一旦涉及到数据更新:数据库和缓存更新,就容易出现缓存(Redis)和数据库(MySQL)间的数据一致性问题。
4、这个业务场景,主要是解决读数据从Redis缓存,一般都是按照下图的流程来进行业务操作。

1.2、缓存先后删除问题

不管是先写MySQL数据库,再删除Redis缓存;还是先删除缓存,再写库,都有可能出现数据不一致的情况。

1.2.1、先删除缓存

1、如果先删除Redis缓存数据,然而还没有来得及写入MySQL,另一个线程就来读取
2、这个时候发现缓存为空,则去Mysql数据库中读取旧数据写入缓存,此时缓存中为脏数据。
3、然后数据库更新后发现Redis和Mysql出现了数据不一致的问题

1.2.2、后删除缓存

1、如果先写了库,然后再删除缓存,不幸的写库的线程挂了,导致了缓存没有删除
2、这个时候就会直接读取旧缓存,最终也导致了数据不一致情况
3、因为写和读是并发的,没法保证顺序,就会出现缓存和数据库的数据不一致的问题

2、解决方案

2.1、延时双删策略

2.1.1、基本思路

在写库前后都进行redis.del(key)操作,并且设定合理的超时时间。

伪代码
public void write( String key, Object data ){
redis.delKey( key );
db.updateData( data );
Thread.sleep( 500 );
redis.delKey( key );
}

2.1.2、具体步骤

1、先删除缓存
2、再写数据库
3、休眠500毫秒
4、再次删除缓存
问题:这个500毫秒怎么确定的,具体该休眠多久时间呢?
1、需要评估自己的项目的读数据业务逻辑的耗时。
2、这么做的目的,就是确保读请求结束,写请求可以删除读请求造成的缓存脏数据。
3、当然这种策略还要考虑redis和数据库主从同步的耗时。
4、最后的的写数据的休眠时间:则在读数据业务逻辑的耗时基础上,加几百ms即可。

2.1.3、设置缓存过期时间(关键点)

1、从理论上来说,给缓存设置过期时间,是保证最终一致性的解决方案
2、所有的写操作以数据库为准,只要到达缓存过期时间,缓存删除
3、如果后面还有读请求的话,就会从数据库中读取新值然后回填缓存

2.1.4、方案缺点

结合双删策略+缓存超时设置,这样最差的情况就是:
1、在缓存过期时间内发生数据存在不一致
2、同时又增加了写请求的耗时。

2.2、异步更新缓存

2.2.1、整体思路

1、涉及到更新的数据操作,利用Mysql binlog 进行增量订阅消费
2、将消息发送到消息队列
3、通过消息队列消费将增量数据更新到Redis上
4、.操作情况
读取Redis缓存:热数据都在Redis上
写Mysql:增删改都是在Mysql进行操作
更新Redis数据:Mysql的数据操作都记录到binlog,通过消息队列及时更新到Redis上

2.2.2、Redis更新过程

数据操作主要分为两种:
1、一种是全量(将所有数据一次性写入Redis)
2、一种是增量(实时更新)
这里说的是增量,指的是mysql的update、insert、delate变更数据。
读取binlog后分析 ,利用消息队列,推送更新各台的redis缓存数据。
1、这样一旦MySQL中产生了新的写入、更新、删除等操作,就可以把binlog相关的消息推送至Redis
2、Redis再根据binlog中的记录,对Redis进行更新
3、其实这种机制,很类似MySQL的主从备份机制,因为MySQL的主备也是通过binlog来实现的数据一致性
这里的消息推送工具你也可以采用别的第三方:kafka、rabbitMQ等来实现推送更新Redis!

3、总结

在高并发应用场景下,如果是对数据一致性要求高的情况下,要定位好导致数据和缓存不一致的原因。
解决高并发场景下数据一致性的方案有两种,分别是延时双删策略和异步更新缓存两种方案。
另外,设置缓存的过期时间是保证数据保持一致性的关键操作,需要结合业务进行合理的设置。

Redis和Mysql保持数据一致性的更多相关文章

  1. redis和mysql结合数据一致性方案

    缓存读: 缓存由于高并发高性能,已经被广泛的应用.在读取缓存方面做法一致.流程如下: 写缓存: 1.先更新数据库,再更新缓存 2.先更新数据库,再删除缓存. (1).先更新数据库,再更新缓存 这套方案 ...

  2. 【面试普通人VS高手系列】Redis和Mysql如何保证数据一致性

    今天分享一道一线互联网公司高频面试题. "Redis和Mysql如何保证数据一致性". 这个问题难倒了不少工作5年以上的程序员,难的不是问题本身,而是解决这个问题的思维模式. 下面 ...

  3. 掘地三尺搞定 Redis 与 MySQL 数据一致性问题

    Redis 拥有高性能的数据读写功能,被我们广泛用在缓存场景,一是能提高业务系统的性能,二是为数据库抵挡了高并发的流量请求,点我 -> 解密 Redis 为什么这么快的秘密. 把 Redis 作 ...

  4. [转]Redis 与Mysql通信

    http://blog.csdn.net/hpb21/article/details/7852934 找了点资料看了下.学习心得如下: 1 Mysql更新Redis Mysql更新Redis借鉴mem ...

  5. Redis(1.8)Redis与mysql的数据库同步(缓存穿透与缓存雪崩)

    [1]缓存穿透与缓存雪崩 [1.1]缓存和数据库间数据一致性问题 分布式环境下(单机就不用说了)非常容易出现缓存和数据库间的数据一致性问题,针对这一点的话,只能说,如果你的项目对缓存的要求是强一致性的 ...

  6. Redis与DB的数据一致性解决方案(史上最全)

    文章很长,而且持续更新,建议收藏起来,慢慢读! 高并发 发烧友社群:疯狂创客圈(总入口) 奉上以下珍贵的学习资源: 疯狂创客圈 经典图书 : 极致经典 + 社群大片好评 < Java 高并发 三 ...

  7. mongodb,redis,mysql 简要对比

    本篇内容大部分不是原创,转载的会贴有链接. 准备学习下数据库,想对目前的主流数据库做一个简单的了解分析,就搜集了资料整理到了一块. 当下主流的要数NoSql数据库了,拥有强大的高并发能力. mongo ...

  8. redis作为mysql的缓存服务器(读写分离,通过mysql触发器实现数据同步)

    一.redis简介Redis是一个key-value存储系统.和Memcached类似,为了保证效率,数据都是缓存在内存中.区别的是redis会周期性的把更新的数据写入磁盘或者把修改操作写入追加的记录 ...

  9. Redis与MySQL的结合

    Redis与MySQL的结合 目前大部分互联网公司使用MySQL作为数据的主要持久化存储,那么如何让Redis与MySQL很好的结合在一起呢?我们主要使用了一种基于MySQL作为主库,Redis作为高 ...

  10. 利用redis协助mysql数据库搬迁

    最近公司新项目上线,需要数据库搬迁,但新版本和老版本数据库差距比较大,关系也比较复杂.如果用传统办法,需要撰写很多mysql脚本,工程量虽然不大,但对于没有dba的公司来说,稍微有点难度.本人就勉为其 ...

随机推荐

  1. flutter系列之:如何自定义动画路由

    目录 简介 自定义跳转使用 flutter动画基础 实现一个自定义的route 总结 简介 flutter中有默认的Route组件,叫做MaterialPageRoute,一般情况下我们在flutte ...

  2. JavaScript基础语法-变量

    JavaScript JavaScript - 变量 1. 概念 变量是用于存放数据的容器 通过变量名可以获取数据 并且数据是可修改的 2. 使用 声明变量 只声明不赋值 直接调用 程序会输出unde ...

  3. 【踩坑】.NET异步方法不标记async,Task<int> 返回值 return default问题

    ​ 在.NET中,返回类型为 Task<T> 的方法并不一定要标记为 async.这是因为 async 关键字只是用来告诉编译器该方法中包含异步操作,并且可以使用 await 和其他异步特 ...

  4. 笔记:C++学习之旅---面向对象程序的设计1

    笔记:C++学习之旅---面向对象程序的设计1 面向对象的主要特征 1.抽象 2.封装 3.继承 4.多态 抽象:将程序的每一部分都看作一个抽象的对象,即程序有一组抽象的对象组成的更复杂点,这些对象根 ...

  5. C# 根据窗口句柄获取窗口截图

    本章介绍如何通过句柄,截取指定窗口内容,以及截取失败的场景 一.根据窗口句柄获取窗口截图 先创建一个测试窗口程序A,显示如下: 同时我们把此窗口的句柄显示到一个文本输入框内. 1 TestBox.Te ...

  6. 解密Prompt系列6. lora指令微调扣细节-请冷静,1个小时真不够~

    上一章介绍了如何基于APE+SELF自动化构建指令微调样本.这一章咱就把微调跑起来,主要介绍以Lora为首的低参数微调原理,环境配置,微调代码,以及大模型训练中显存和耗时优化的相关技术细节 标题这样写 ...

  7. #Power Query 分组依据,数据的分类汇总

    一:概述 Power Query中的分组依据,类似于Excel中的分类汇总功能,可以按照某一分类对某列数据或某几列数据进行去重操作和聚合计算(求和.计数.求平均.非重复行计数等),并在去重的过程中将其 ...

  8. 2022-06-30:以下golang代码输出什么?A:0;B:2;C:运行错误。 package main import “fmt“ func main() { ints := make

    2022-06-30:以下golang代码输出什么?A:0:B:2:C:运行错误. package main import "fmt" func main() { ints := ...

  9. ChatGPT Plugin开发setup - Java(Spring Boot) Python(fastapi)

    记录一下快速模板,整体很简单,如果不接auth,只需要以下: 提供一个/.well-known/ai-plugin.json接口,返回openAI所需要的格式 提供openAPI规范的文档 CORS设 ...

  10. Python从零到壹丨图像增强的顶帽运算和底帽运算

    摘要:这篇文章详细介绍了顶帽运算和底帽运算,它们将为后续的图像分割和图像识别提供有效支撑. 本文分享自华为云社区<[Python从零到壹] 四十九.图像增强及运算篇之顶帽运算和底帽运算>, ...