题目

输入n(n≤100000)个单词,是否可以把所有这些单词排成一个序列,使得每个单词的第一个字母和上一个单词的最后一个字母相同(例如 acm,malform,mouse)。每个单词最多包含1000个小写字母。输入中可以有重复单词。

解题思路

把字母看作结点,单词看作有向边,则问题有解等价于图中存在欧拉道路。有向图中存在欧拉道路的条件有两个:一是底图(忽略边的方向后得到的无向图)连通,二是度数满足不存在奇点或奇点数为2。度数判读只要在输入时记录每个顶点的入度出度,而连通性判断有两种:DFS和并查集。

代码实现

dfs判断连通性+特判入出度

 #include<stdio.h>
#include<cstring>
using namespace std; const int maxn = + ;
int G[maxn][maxn],in[maxn],out[maxn];
int vis[maxn]; //点是否访问,不是边
int n;
char word[ + ]; void dfs(int u)
{
vis[u] = ;
for (int v = ; v < maxn; v++) if (G[u][v])
{
G[u][v] = G[v][u] = ;
//G[u][v]--; G[v][u]--;
dfs(v);
}
} int main()
{
int T;
scanf("%d", &T);
while (T--)
{
memset(G, , sizeof(G));
memset(in, , sizeof(in));
memset(out, , sizeof(out));
memset(vis, , sizeof(vis));
scanf("%d", &n);
int start; //起点
while (n--)
{
scanf("%s", word);
int len = strlen(word);
int u = word[] - 'a', v = word[len - ] - 'a';
start = u;
vis[u] = vis[v] = -; //出现过的标为-1
G[u][v] = G[v][u] = ; //连通性按无向图处理
//G[u][v]++; G[v][u]++;
out[u]++; //度数按有向图处理
in[v]++;
} bool flag = true; //满足要求为true
int s_odd = ,t_odd = ; //起始奇点、结束奇点
for (int i = ; i < maxn; i++)
{
if (in[i] == out[i]) continue;
if (out[i] == in[i] + && !s_odd) { start = i; s_odd = ; }
else if (in[i] == out[i] + && !t_odd) t_odd = ;
else { flag = false; break; }
}
if (flag)
{
dfs(start); //也可以不从奇点出发,这个只是判断连通性
for (int i = ; i < maxn; i++)
if (vis[i] == -) { flag = false; break; }
} if (flag) printf("Ordering is possible.\n");
else printf("The door cannot be opened.\n");
}
return ;
}

并查集判断连通性+特判入出度

 #include<stdio.h>
#include<iostream>
#include<algorithm>
#include<cstring>
#include<string>
#include<cmath>
using namespace std; const int maxn = + ;
int in[maxn], out[maxn], flag[maxn], p[maxn], fa[maxn];
int n; void init()
{
for (int i = ; i < ; i++)
fa[i] = i;
memset(in, , sizeof(in));
memset(out, , sizeof(out));
memset(flag, , sizeof(flag));
memset(p, , sizeof(p));
}
int find(int x)
{
if (fa[x] != x) return fa[x] = find(fa[x]);
return fa[x];
} void unite(int x, int y)
{
int rx = find(x);
int ry = find(y);
fa[rx] = ry;
} int main()
{
int T;
int a, b;
string str;
scanf("%d", &T);
while (T--)
{
init();
scanf("%d", &n);
for (int i = ; i < n; i++)
{
cin >> str;
a = str[] - 'a';
b = str[str.size() - ] - 'a';
unite(a, b);
in[a]++;
out[b]++;
flag[a] = flag[b] = ;
} int cnt = ; //记录连通分量
int root;
for (int i = ; i < ; i++)
{
if (flag[i])
{
root = find(i);
break;
}
}
for (int i = ; i < ; i++)
{
if (flag[i])
if (root != find(i)) cnt = ;
} if (cnt) {
printf("The door cannot be opened.\n");
continue;
} int k = ; //p[i]记录度数不等的
for (int i = ; i < ; i++)
{
if (flag[i] && in[i] != out[i]) p[k++] = i;
}
if (k == )
{
printf("Ordering is possible.\n");
continue;
}
if (k == && (in[p[]] - out[p[]] == && in[p[]] - out[p[]] == -) || (in[p[]] - out[p[]] == - && in[p[]] - out[p[]] == ))
{
printf("Ordering is possible.\n");
continue;
}
else
{
printf("The door cannot be opened.\n");
}
}
return ;
}

参考链接:https://blog.csdn.net/qq_29169749/article/details/51111377

UVA10129———欧拉道路的更多相关文章

  1. UVA-10129 Play on Words (判断欧拉道路的存在性)

    题目大意:给出一系列单词,当某个单词的首字母和前一个单词的尾字母相同,则这两个单词能链接起来.给出一系列单词,问是否能够连起来. 题目分析:以单词的首尾字母为点,单词为边建立有向图,便是判断图中是否存 ...

  2. Uva 10129 - Play on Words 单词接龙 欧拉道路应用

    跟Uva 10054很像,不过这题的单词是不能反向的,所以是有向图,判断欧拉道路. 关于欧拉道路(from Titanium大神): 判断有向图是否有欧拉路 1.判断有向图的基图(即有向图转化为无向图 ...

  3. UVa 10129 Play On Words【欧拉道路 并查集 】

    题意:给出n个单词,问这n个单词能否首尾接龙,即能否构成欧拉道路 按照紫书上的思路:用并查集来做,取每一个单词的第一个字母,和最后一个字母进行并查集的操作 但这道题目是欧拉道路(下面摘自http:// ...

  4. Nyoj42 一笔画问题 (欧拉道路)

    http://acm.nyist.net/JudgeOnline/problem.php?pid=42题目链接 #include <cstdio> #include <cstring ...

  5. 6-14 Inspector s Dilemma uva12118(欧拉道路)

    题意:给出一个国家城市个数n   所需走过道路个数e   每条道路长t   该国家任意两个城市之间都存在唯一道路长t     要求 :找一条最短的路遍历所有所需走过的路 一开始以为是图的匹配  但是好 ...

  6. POJ 2513 Colored Sticks(欧拉道路+字典树+并查集)

    http://poj.org/problem?id=2513 题意: 给定一些木棒,木棒两端都涂上颜色,求是否能将木棒首尾相接,连成一条直线,要求不同木棒相接的一边必须是相同颜色的. 思路: 题目很明 ...

  7. UVA 10129 Play on Words(欧拉道路)

    题意:给你n个字符串,问你是否可以出现一条链,保证链中每个字符串的第一个元素与上一个字符串的最后一个元素相同,注意可能重复出现同一个字符串 题解:以每一个字符串第一个元素指向最后一个元素形成一个有向图 ...

  8. 【UVa】12118 Inspector's Dilemma(欧拉道路)

    题目 题目     分析 很巧秒的一道题目,对着绿书瞎yy一会. 联一下必须要走的几条边,然后会形成几个联通分量,统计里面度数为奇数的点,最后再减去2再除以2.这样不断相加的和加上e再乘以t就是答案, ...

  9. UVA 10441 - Catenyms(欧拉道路)

    UVA 10441 - Catenyms 题目链接 题意:给定一些单词,求拼接起来,字典序最小的,注意这里的字典序为一个个单词比过去,并非一个个字母 思路:欧拉回路.利用并查集判联通,然后欧拉道路判定 ...

随机推荐

  1. 【POJ 2407】 Relatives

    [题目链接] 点击打开链接 [算法] 欧拉函数 [代码] #include <algorithm> #include <bitset> #include <cctype& ...

  2. CentOS 6.5升级到CentOS 7

    CentOS7 已经发布了,之前一直想在上面测试一下,一直没有机会,这次终于可以感受一下CentOS7了.一直使用CentOS6.5有一段时间了,但是由于它的内核版本依然停留在2.6.32,所以决定升 ...

  3. Divide the Sequence

    Time Limit: 5000/2500 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)Total Submission( ...

  4. Spring Boot与Spring Session集成

    1. 参考资料 https://docs.spring.io/spring-session/docs/current/reference/html5/guides/boot-redis.html ht ...

  5. k8s-存储卷1-十二

    因为pod是有生命周期的,pod一重启,里面的数据就没有了.所以我们需要数据持久化存储. 在k8s中,存储卷不属于容器,而是属于pod.也就是说同一个pod中的容器可以共享一个存储卷. 存储卷可以是宿 ...

  6. HDU 1270 小希的数表 (暴力枚举+数学)

    题意:... 析:我们可以知道,a1+a2=b1,那么我们可以枚举a1,那么a2就有了,并且a1+a3=b2,所以a3就有了,我们再从把里面的剩下的数两两相加,并从b数组中去掉, 那么剩下的最小的就是 ...

  7. E20180419-hm

    rectangle n. [数] 长方形,矩形; ratio n. 比例; 比,比率; 系数;  vt. 求出比值,除,使…成比例; 将(相片)按比例放大[缩小]; aspect  n. 方面; 面貌 ...

  8. UILabel和UIButton添加下划线

    关于UILabel和UIButton有的时候需要添加下划线,一般有两种方式通过默认的 NSMutableAttributedString设置,第二种就是在drawRect中画一条下划线,本文就简单的选 ...

  9. POJ1270【拓扑排序+DFS】

    题意: 先给你一个字符串,让你给他们排序: 再给你一行,在这一行,每两个就是第一个需要在第二个前面: 思路: //DFS写多了感觉好有啊,就是排序过程中可能会有多种情况. //我们考虑一下怎么排好一个 ...

  10. hdoj2952【DFS联通块】

    我觉得还是这种不带回溯的直接搜到底的好玩啊!!!但是要注意边界,记得以前四周要空出来的一道题目,被坑了很久,还是wa到比赛结束!!!这道还是基础题 类似的基础题:POJ1562 hdoj1016 po ...