洛谷 P2519 [HAOI2011]problem a
考虑转化为求最多说真话的人数
设$f(i)$表示排名前$i$的人中最多说真话的人的数量,考虑转移,如果由$j$转移而来,可以设$[j,i]$之间的人全都分数相等,那么式子就是$f[i]=f[j-1]+sum([j,i])$,其中$sum([j,i])$表示处在这个区间的人数,全部分数相等,另外如果人数多于区间数,多出来的人都在说谎
//minamoto
#include<bits/stdc++.h>
#define mp(i,j) make_pair(i,j)
using namespace std;
#define getc() (p1==p2&&(p2=(p1=buf)+fread(buf,1,1<<21,stdin),p1==p2)?EOF:*p1++)
char buf[<<],*p1=buf,*p2=buf;
template<class T>inline bool cmax(T&a,const T&b){return a<b?a=b,:;}
inline int read(){
#define num ch-'0'
char ch;bool flag=;int res;
while(!isdigit(ch=getc()))
(ch=='-')&&(flag=true);
for(res=num;isdigit(ch=getc());res=res*+num);
(flag)&&(res=-res);
#undef num
return res;
}
const int N=;
vector<int> a[N];int n,f[N];map<pair<int,int>,int> x;
vector<int>::iterator ii;
int main(){
// freopen("testdata.in","r",stdin);
n=read();
for(int i=;i<=n;++i){
int l=read(),r=read();
++l,r=n-r;
if(l>r) continue;
if(++x[mp(l,r)]==) a[r].push_back(l);
}
for(int i=;i<=n;++i){
f[i]=f[i-];
for(ii=a[i].begin();ii!=a[i].end();++ii)
cmax(f[i],f[(*ii)-]+min(i-(*ii)+,x[mp(*ii,i)]));
}
printf("%d\n",n-f[n]);
return ;
}
洛谷 P2519 [HAOI2011]problem a的更多相关文章
- 洛谷P2522 - [HAOI2011]Problem b
Portal Description 进行\(T(T\leq10^5)\)次询问,每次给出\(x_1,x_2,y_1,y_2\)和\(d\)(均不超过\(10^5\)),求\(\sum_{i=x_1} ...
- 洛谷 P2523 [HAOI2011]Problem c
洛谷1或洛谷2,它们是一样的题目,手动滑稽- 这一题我是想不出来, 但是我想吐槽一下坐我左边的大佬. 大佬做题的时候,只是想了几分钟,拍了拍大腿,干脆的道:"这不是很显然吗!" 然 ...
- 洛谷P2522 [HAOI2011]Problem b(莫比乌斯反演)
传送门 我们考虑容斥,设$ans(a,b)=\sum_{i=1}^a\sum_{j=1}^b[gcd(a,b)==k]$,这个东西可以和这一题一样去算洛谷P3455 [POI2007]ZAP-Quer ...
- 洛谷P2522 [HAOI2011]Problem b (莫比乌斯反演+容斥)
题意:求$\sum_{i=a}^{b}\sum_{j=c}^{d}[gcd(i,j)==k]$(1<=a,b,c,d,k<=50000). 是洛谷P3455 [POI2007]ZAP-Qu ...
- 洛谷P2523 [HAOI2011]Problem c(计数dp)
题面 luogu 题解 首先,显然一个人实际位置只可能大于或等于编号 先考虑无解的情况 对于编号为\(i\),如果确认的人编号在\([i,n]\)中数量大于区间长度,那么就无解 记\(S[i]\)表示 ...
- 洛谷P2522 [HAOI2011]Problem b(莫比乌斯反演)
题目描述 对于给出的n个询问,每次求有多少个数对(x,y),满足a≤x≤b,c≤y≤d,且gcd(x,y) = k,gcd(x,y)函数为x和y的最大公约数. 输入输出格式 输入格式: 第一行一个整数 ...
- 洛谷 P2522 [HAOI2011]Problem b (莫比乌斯反演+简单容斥)
题目描述 对于给出的n个询问,每次求有多少个数对(x,y),满足a≤x≤b,c≤y≤d,且gcd(x,y) = k,gcd(x,y)函数为x和y的最大公约数. 输入输出格式 输入格式: 第一行一个整数 ...
- 洛谷$P2523\ [HAOI2011]\ Problem\ c$ $dp$
正解:$dp$ 解题报告: 传送门$QwQ$ 首先港下不合法的情况.设$sum_i$表示$q\geq i$的人数,当且仅当$sum_i>n-i+1$时无解. 欧克然后考虑这题咋做$QwQ$. 一 ...
- [luogu] P2519 [HAOI2011]problem a (贪心)
P2519 [HAOI2011]problem a 题目描述 一次考试共有n个人参加,第i个人说:"有ai个人分数比我高,bi个人分数比我低."问最少有几个人没有说真话(可能有相同 ...
随机推荐
- java cup占用高分析脚本
[was@dmgr ita-scripts]$ vi java_analys.sh PID=$1 ; ps -mp $PID -o THREAD,tid,time | awk -F " ...
- 使用Poi对EXCLE的导入导出
import java.io.FileInputStream; import java.io.FileOutputStream; import java.io.IOException; import ...
- 《ASP.NET》数据绑定—DataList
DataList控件是.NET中的一个控件.DataList控件以表的形式呈现数据(在属性生成器中能够编辑),通过该控件,您能够使用不同的布局来显示数据记录(使用模板编辑).比如,将数据记录排成列或行 ...
- c#生成PDF准考证
项目中需要做一个生成PDF准考证的功能,在这里跟大家分享一下思路.. 1.首先是下载Adobe Acrobat 9 Pro,安装破解(高版本的貌似破解,不了,自带正版意识的略过..随意下载) 2.新建 ...
- HDU 6096 String 排序 + 线段树 + 扫描线
String Time Limit: 6000/3000 MS (Java/Others) Memory Limit: 524288/524288 K (Java/Others) Problem De ...
- 【bzoj4554】[Tjoi2016&Heoi2016]游戏
现在问题有硬石头和软石头的限制 所以要对地图进行预处理 分行做,把有#隔开的*(x)形成联通块的存储下来. 分列作,把有#隔开的*(x)形成联通块的存储下来. 求出所有的行联通个数和列联通个数 作为二 ...
- 【bzoj4653】[Noi2016]区间
离散化+线段树 #include<algorithm> #include<iostream> #include<cstdlib> #include<cstri ...
- SLG, 菱形格子的算法.(递归版
class GeoPoint{ public: int x; int y; public: bool operator == (const GeoPoint& p){ return p.x = ...
- Android IntentService的使用和源代码分析
引言 Service服务是Android四大组件之中的一个,在Android中有着举足重轻的作用.Service服务是工作的UI线程中,当你的应用须要下载一个文件或者播放音乐等长期处于后台工作而有没有 ...
- 使用forever让node.js持久运行
何为forever?forever可以看做是一个nodejs的守护进程,能够启动,停止,重启我们的app应用. npm install forever -g #安装 forever start app ...