题目:https://www.luogu.org/problemnew/show/P3830

询问1:f[x]表示有x个叶节点的树的叶节点平均深度;

    可以把被扩展的点的深度看做 f[x-1] ,于是两个新点深度为 f[x-1]+1,而剩下的x-2个点平均深度就是f[x-1];

    所以f[x] = [ f[x-1] * (x-2) + (f[x-1] + 1) * 2 ] / x ;

    整理得到f[x] = f[x-1] + 2 / x ;

询问2:f[i][j]表示有i个叶子节点、深度为j的概率;

    把状态分成两个子状态,就是左子树和右子树,转移即可;

代码如下:

#include<iostream>
#include<cstdio>
#include<cstring>
using namespace std;
int q,n;
double f[][],ans;//[叶子个数][深度] <[左子树叶子个数]>
void solve1()
{
for(int i=;i<=n;i++)
ans+=2.0/i;
printf("%.6lf\n",ans);
}
void solve2()
{
f[][]=;
f[][]=;
f[][]=;
for(int i=;i<=n;i++)//叶子个数
for(int j=;j<i;j++)//左子树叶子个数
for(int k=;k<j;k++)//左子树深度
for(int l=;l<i-j;l++)//右子树深度
f[i][max(k,l)+]+=f[j][k]*f[i-j][l]/(i-);
for(int i=;i<=n;++i)ans+=i*f[n][i];
printf("%.6lf\n",ans);
}
int main()
{
scanf("%d%d",&q,&n);
if(q==)solve1();
if(q==)solve2();
return ;
}

洛谷P3830 [SHOI2012]随机树——概率期望的更多相关文章

  1. 洛谷P3830 [SHOI2012]随机树(期望dp)

    题面 luogu 题解 第一问: 设\(f[i]\)表示\(i\)步操作后,平均深度期望 \(f[i] = \frac {f[i - 1] * (i - 1)+f[i-1]+2}{i}=f[i-1]+ ...

  2. 洛谷 P3830 [SHOI2012]随机树

    https://www.luogu.org/problemnew/show/P3830 具体方法见代码.. 其实挺神奇的,概率可以先算出“前缀和”(A小于等于xxx的概率),然后再“差分”得到A恰好为 ...

  3. 洛谷3830 [SHOI2012]随机树 【概率dp】

    题目 输入格式 输入仅有一行,包含两个正整数 q, n,分别表示问题编号以及叶结点的个数. 输出格式 输出仅有一行,包含一个实数 d,四舍五入精确到小数点后 6 位.如果 q = 1,则 d 表示叶结 ...

  4. P3830 [SHOI2012]随机树 题解

    P3830 随机树 坑题,别人的题解我看了一个下午没一个看得懂的,我还是太弱了. 题目链接 P3830 [SHOI2012]随机树 题目描述 输入输出格式 输入格式: 输入仅有一行,包含两个正整数 q ...

  5. 【BZOJ2830/洛谷3830】随机树(动态规划)

    [BZOJ2830/洛谷3830]随机树(动态规划) 题面 洛谷 题解 先考虑第一问. 第一问的答案显然就是所有情况下所有点的深度的平均数. 考虑新加入的两个点,一定会删去某个叶子,然后新加入两个深度 ...

  6. P3830 [SHOI2012]随机树

    P3830 [SHOI2012]随机树 链接 分析: 第一问:f[i]表示有i个叶子结点的时候的平均深度,$f[i] = \frac{f[i - 1] + 2 + f[i - 1] * (i - 1) ...

  7. luogu P3830 [SHOI2012]随机树 期望 dp

    LINK:随机树 非常经典的期望dp. 考虑第一问:设f[i]表示前i个叶子节点的期望平均深度. 因为期望具有线性性 所以可以由每个叶子节点的期望平均深度得到总体的. \(f[i]=(f[i-1]\c ...

  8. luogu P3830 [SHOI2012]随机树

    输入格式 输入仅有一行,包含两个正整数 q, n,分别表示问题编号以及叶结点的个数. 输出格式 输出仅有一行,包含一个实数 d,四舍五入精确到小数点后 6 位.如果 q = 1,则 d 表示叶结点平均 ...

  9. 洛谷P5437/5442 约定(概率期望,拉格朗日插值,自然数幂)

    题目大意:$n$ 个点的完全图,点 $i$ 和点 $j$ 的边权为 $(i+j)^k$.随机一个生成树,问这个生成树边权和的期望对 $998244353$ 取模的值. 对于P5437:$1\le n\ ...

随机推荐

  1. BUPT复试专题—中序遍历序列(2013)

    题目描述 给出一个序列,判断该序列是不是某二叉搜索树的中序遍历序列,如果是输出"Yes",否则输出"No".一颗带权二叉树是一颗二叉搜索树(二叉排序树),当且仅 ...

  2. webrtc初探

    0.闲来无事,想研究webrtc,看了一些网上的文章之后,觉得谬误较多,以讹传讹的比较多,自己试验了一把,记录一下. 官网的写的教程在实践中也觉得不用那么复杂,有种落伍与繁冗的感觉. 1.我想看的是w ...

  3. [Python-MATLAB] 在Python中调用MATLAB的API

    可以参考官方的说明文档: http://cn.mathworks.com/help/matlab/matlab_external/get-started-with-matlab-engine-for- ...

  4. 文件管理中心iOS APP (国外市场:File Center) 技术支持

    文件管理中心iOS APP (国外市场:File Center) 技术支持网址:http://www.cnblogs.com/flychen/邮箱:592802944@qq.com

  5. Flume-ng-sdk源码分析

    Flume 实战(2)--Flume-ng-sdk源码分析 - mumuxinfei - 博客园 http://www.cnblogs.com/mumuxinfei/p/3823266.html

  6. Cooperating sequential processes》,这篇论文提出了大名鼎鼎的概念信号量,Java里面用于线程同步的wait/notify也是信号量的一种实现。

    闲话高并发的那些神话,看京东架构师如何把它拉下神坛 https://mp.weixin.qq.com/s/lAqn8CfSRta9iSvOR1Le6w

  7. 编译spark源码 Maven 、SBT 2种方式编译

    由于实际环境较为复杂,从Spark官方下载二进制安装包可能不具有相关功能或不支持指定的软件版本,这就需要我们根据实际情况编译Spark源代码,生成所需要的部署包. Spark可以通过Maven和SBT ...

  8. SWT.Shell

    import org.eclipse.swt.widgets.Display; import org.eclipse.swt.widgets.Shell; public class SWT_Shell ...

  9. 阶乘问题(大数阶乘)简单 n! (一个大数与一个小数相乘的算法 、一个大数与一个小数的除法算法 *【模板】 )

    sdut oj 简单n! Time Limit: 1000ms   Memory limit: 65536K  有疑问?点这里^_^ 题目描述 给定一个数n(0 <= n <= 150), ...

  10. HDU4289 Control —— 最小割、最大流 、拆点

    题目链接:https://vjudge.net/problem/HDU-4289 Control Time Limit: 2000/1000 MS (Java/Others)    Memory Li ...