BZOJ1221 [HNOI2001] 软件开发 【费用流】
题目
某软件公司正在规划一项n天的软件开发计划,根据开发计划第i天需要ni个软件开发人员,为了提高软件开发人员的效率,公司给软件人员提供了很多的服务,其中一项服务就是要为每个开发人员每天提供一块消毒毛巾,这种消毒毛巾使用一天后必须再做消毒处理后才能使用。消毒方式有两种,A种方式的消毒需要a天时间,B种方式的消毒需要b天(b>a),A种消毒方式的费用为每块毛巾fA, B种消毒方式的费用为每块毛巾fB,而买一块新毛巾的费用为f(新毛巾是已消毒的,当天可以使用);而且f>fA>fB。公司经理正在规划在这n天中,每天买多少块新毛巾、每天送多少块毛巾进行A种消毒和每天送多少块毛巾进行B种消毒。当然,公司经理希望费用最低。你的任务就是:为该软件公司计划每天买多少块毛巾、每天多少块毛巾进行A种消毒和多少毛巾进行B种消毒,使公司在这项n天的软件开发中,提供毛巾服务的总费用最低。
输入格式
第1行为n,a,b,f,fA,fB. 第2行为n1,n2,……,nn. (注:1≤f,fA,fB≤60,1≤n≤1000)
输出格式
最少费用
输入样例
4 1 2 3 2 1
8 2 1 6
输出样例
38
题解
除了送洗时间多算一天
同 餐厅计划问题
#include<iostream>
#include<cstdio>
#include<cmath>
#include<queue>
#include<cstring>
#include<algorithm>
#define LL long long int
#define Redge(u) for (int k = h[u],to; k; k = ed[k].nxt)
#define REP(i,n) for (int i = 1; i <= (n); i++)
#define BUG(s,n) for (int i = 1; i <= (n); i++) cout<<s[i]<<' '; puts("");
using namespace std;
const int maxn = 3005,maxm = 1000005,INF = 1000000000;
inline int read(){
int out = 0,flag = 1; char c = getchar();
while (c < 48 || c > 57){if (c == '-') flag = -1; c = getchar();}
while (c >= 48 && c <= 57){out = (out << 3) + (out << 1) + c - 48; c = getchar();}
return out * flag;
}
int h[maxn],ne = 2;
struct EDGE{int from,to,nxt,f,w;}ed[maxm];
inline void build(int u,int v,int f,int w){
ed[ne] = (EDGE){u,v,h[u],f,w}; h[u] = ne++;
ed[ne] = (EDGE){v,u,h[v],0,-w}; h[v] = ne++;
}
int S,T,d[maxn],p[maxn],minf[maxn],vis[maxn];
queue<int> q;
int mincost(){
int flow = 0,cost = 0;
while (true){
for (int i = S; i <= T; i++) d[i] = INF,vis[i] = false;
q.push(S); d[S] = 0; vis[S] = true; minf[S] = INF;
int u;
while (!q.empty()){
u = q.front(); q.pop();
vis[u] = false;
Redge(u) if (ed[k].f && d[to = ed[k].to] > d[u] + ed[k].w){
d[to] = d[u] + ed[k].w; minf[to] = min(minf[u],ed[k].f); p[to] = k;
if (!vis[to]) q.push(to),vis[to] = true;
}
}
if (d[T] == INF) break;
flow += minf[T]; cost += minf[T] * d[T];
u = T;
while (u != S){
ed[p[u]].f -= minf[T];
ed[p[u] ^ 1].f += minf[T];
u = ed[p[u]].from;
}
}
return cost;
}
int n,a,b,f,fa,fb;
int main(){
n = read(); a = read(); b = read(); f = read(); fa = read(); fb = read();
S = 0; T = 3 * n + 1;
for (int i = 1; i <= n; i++){
int x = read();
build(i,T,x,0);
build(S,i + n,INF,0);
build(i + n,i,INF,f);
build(i + n,i + 2 * n,x,0);
if (i + a <= n) build(i + 2 * n,i + a + 1,x,fa);
if (i + b <= n) build(i + 2 * n,i + b + 1,x,fb);
if (i < n) build(i,i + 1,INF,0);
}
printf("%d\n",mincost());
return 0;
}
BZOJ1221 [HNOI2001] 软件开发 【费用流】的更多相关文章
- BZOJ1221 [HNOI2001]软件开发 - 费用流
题解 非常显然的费用流. 但是建图还是需要思考的QuQ 将每天分成两个节点 $x_{i,1}, x_{i,2} $, $ x_{i,1}$用于提供服务, $x_{i ,2}$ 用来从源点获得$nd[i ...
- bzoj 1221 [HNOI2001] 软件开发 费用流
[HNOI2001] 软件开发 Time Limit: 10 Sec Memory Limit: 162 MBSubmit: 1938 Solved: 1118[Submit][Status][D ...
- 【bzoj1221】[HNOI2001] 软件开发 费用流
题目描述 某软件公司正在规划一项n天的软件开发计划,根据开发计划第i天需要ni个软件开发人员,为了提高软件开发人员的效率,公司给软件人员提供了很多的服务,其中一项服务就是要为每个开发人员每天提供一块消 ...
- BZOJ 1221 [HNOI2001] 软件开发 费用流_建模
题目描述: 某软件公司正在规划一项n天的软件开发计划,根据开发计划第i天需要ni个软件开发人员,为了提高软件开发人员的效率,公司给软件人员提供了很多的服务,其中一项服务就是要为每个开发人员每天提供 ...
- bzoj1221软件开发 费用流
题目传送门 思路: 网络流拆点有的是“过程拆点”,有的是“状态拆点”,这道题应该就属于状态拆点. 每个点分需要用的,用完的. 对于需要用的,这些毛巾来自新买的和用过的毛巾进行消毒的,流向终点. 对于用 ...
- bzoj1221: [HNOI2001] 软件开发
挖坑.我的那种建图方式应该也是合理的.然后连样例都过不了.果断意识到应该为神奇建图法... #include<cstdio> #include<cstring> #includ ...
- 【BZOJ1221】【HNOI2001】软件开发 [费用流]
软件开发 Time Limit: 10 Sec Memory Limit: 162 MB[Submit][Status][Discuss] Description 某软件公司正在规划一项n天的软件开 ...
- 【费用流】bzoj1221 [HNOI2001] 软件开发
几乎为“线性规划与网络流24题”中的餐巾问题. 这里把S看成毛巾的来源,T看成软件公司,我们的目的就是让每天的毛巾满足要求(边满流). 引用题解: [问题分析] 网络优化问题,用最小费用最大流解决. ...
- BZOJ 1221 软件开发(费用流)
容易看出这是显然的费用流模型. 把每天需要的餐巾数作为限制.需要将天数拆点,x’表示每天需要的餐巾,x’’表示每天用完的餐巾.所以加边 (s,x',INF,0),(x'',t,INF,0). 餐巾可以 ...
随机推荐
- nagios的安装配置
主要参考博客:http://www.cnblogs.com/mchina/archive/2013/02/20/2883404.html 实验环境:centos6.4 最小化安装系统 **** ...
- codevs 1742 爬楼梯(水题日常)
时间限制: 1 s 空间限制: 128000 KB 题目等级 : 黄金 Gold 题目描述 Description 小明家外面有一个长长的楼梯,共N阶.小明的腿很长,一次能跨过一或两阶.有一天,他 ...
- vijos 1524 最小监视代价
背景 看到Vijos上此类型的题目较少,特地放一道上来给大家练练. 描述 由于yxy小朋友做了一些不该做的事,他被jzp关进了一个迷宫里.由于jzp最近比较忙,疏忽大意了一些,yxy可以在迷宫中任意走 ...
- (二)maven之项目结构
我们可以看一下Maven项目的大致结构: 项目结构: src/main/java:java源代码文件目录. src/main/resources:资源库,会自动赋值到classes目录里,像 ...
- java 核心技术卷一笔记 6 .2.3 接口 lambda 表达式 内部类
6.2.3 对象克隆 Cloneable 接口,这个接口指示一个类提供了一个安全的clone方法.(稍作了解) 为一个对象引用的变量建立副本时,原变量和副本都是同一个对象的引用,任何一个变量改变都 ...
- jni log 使用
1. 在源文件中添加头文件 #include <android/log.h> #define LOG_TAG "System.out.c" #define LOGD(. ...
- 解决response在controller返回乱码的解决方式
乱码的代码 @RequestMapping(value = "/readbook", method = RequestMethod.GET) 加入 produces = " ...
- 《c++编程思想》关于虚函数在构造函数行为的理解,理解有误,望告知!
<c++编程思想>书上有一段话:在任何构造函数中,可能只是部分形成对象——我们只能知道基类已被初始化,但并不知道哪个类是从这个基类继承来的.然而,虚函数在继承层次上是“向前”和“向外”进行 ...
- 主DNS服务-反向解析
上篇说了主DNS正向解析 当中是有个小问题的,什么问题呢? 试问当我们输入wwww或ww或更多w的时候它还能解析出来吗? 或者不输入w的时候还能解析吗? 上篇没有定义是解析不了的,怎么定义呢?很简单, ...
- jenkins插件开发(二)
https://wiki.jenkins.io/display/JENKINS/Extend+Jenkins http://commons.apache.org/proper/commons-jell ...