UVa563_Crimewave(网络流/最大流)(小白书图论专题)
解题报告
思路:
要求抢劫银行的伙伴(想了N多名词来形容,强盗,贼匪,小偷,sad。都认为不合适)不在同一个路口相碰面,能够把点拆成两个点,一个入点。一个出点。
再设计源点s连向银行位置。再矩阵外围套上一圈。连向汇点t
矩阵内的点,出点和周围的点的出点相连。
#include <iostream>
#include <cstring>
#include <cstdio>
#include <queue>
#define M 500000
#define N 10000
#define inf 0x3f3f3f3f
using namespace std;
int n,m,h,w,head[N],pre[N],l[N],mmap[N][N],cnt,s,t;
struct node {
int v,w,next;
} edge[M];
int dx[]= {-1,0,1,0};
int dy[]= {0,1,0,-1};
void add(int u,int v,int w) {
edge[cnt].v=v;
edge[cnt].w=w;
edge[cnt].next=head[u];
head[u]=cnt++; edge[cnt].v=u;
edge[cnt].w=0;
edge[cnt].next=head[v];
head[v]=cnt++;
}
int bfs() {
memset(l,-1,sizeof(l));
l[s]=0;
int i,u,v;
queue<int >Q;
Q.push(s);
while(!Q.empty()) {
u=Q.front();
Q.pop();
for(i=head[u]; i!=-1; i=edge[i].next) {
v=edge[i].v;
if(l[v]==-1&&edge[i].w) {
l[v]=l[u]+1;
Q.push(v);
}
}
}
return l[t]>0;
}
int dfs(int u,int f) {
int a,flow=0;
if(u==t)return f;
for(int i=head[u]; i!=-1; i=edge[i].next) {
int v=edge[i].v;
if(l[v]==l[u]+1&&edge[i].w&&(a=dfs(v,min(f,edge[i].w)))) {
edge[i].w-=a;
edge[i^1].w+=a;
flow+=a;
f-=a;
if(!f)break;
}
}
if(!flow)l[u]=-1;
return flow;
}
int main() {
int i,j,T,k,x,y;
scanf("%d",&T);
while(T--) {
cnt=k=0;
memset(head,-1,sizeof(head));
scanf("%d%d%d",&h,&w,&m);
h+=2;
w+=2;
for(i=0; i<h; i++) {
for(j=0; j<w; j++) {
mmap[i][j]=++k;
}
}
s=0;
t=k*2+1;
for(i=1; i<h-1; i++) {
for(j=1; j<w-1; j++) {
add(mmap[i][j],mmap[i][j]+k,1);
for(int l=0; l<4; l++) {
int x=i+dx[l];
int y=j+dy[l];
if(x>=1&&x<h-1&&y>=1&&y<w-1)
add(mmap[i][j]+k,mmap[x][y],1);
}
}
}
for(i=1; i<w-1; i++) {
add(mmap[1][i]+k,mmap[0][i],1);
add(mmap[0][i],t,1);
add(mmap[h-2][i]+k,mmap[h-1][i],1);
add(mmap[h-1][i],t,1);
}
for(i=1; i<h-1; i++) {
add(mmap[i][1]+k,mmap[i][0],1);
add(mmap[i][0],t,1);
add(mmap[i][w-2]+k,mmap[i][w-1],1);
add(mmap[i][w-1],t,1);
}
for(i=0; i<m; i++) {
scanf("%d%d",&x,&y);
add(s,mmap[x][y],1);
}
int ans=0,a;
while(bfs())
while(a=dfs(s,inf))
ans+=a;
if(ans==m)
printf("possible\n");
else printf("not possible\n");
}
return 0;
}
| Crimewave |
Nieuw Knollendam is a very modern town. This becomes clear already when looking at the layout of its map, which is just a rectangular grid of streets and avenues. Being an important trade centre, Nieuw Knollendam
also has a lot of banks. Almost on every crossing a bank is found (although there are never two banks at the same crossing). Unfortunately this has attracted a lot of criminals. Bank hold-ups are quite common, and often on one day several banks are robbed.
This has grown into a problem, not only to the banks, but to the criminals as well. After robbing a bank the robber tries to leave the town as soon as possible, most of the times chased at high speed by the police. Sometimes two running criminals pass the
same crossing, causing several risks: collisions, crowds of police at one place and a larger risk to be caught.
To prevent these unpleasant situations the robbers agreed to consult together. Every Saturday night they meet and make a schedule for the week to come: who is going to rob which bank on which day? For every day they try to plan the get-away routes, such that
no two routes use the same crossing. Sometimes they do not succeed in planning the routes according to this condition, although they believe that such a planning should exist.
Given a grid of
and the crossings where the banks to be robbed are located, find out whether or not it is possible to plan a
get-away route from every robbed bank to the city-bounds, without using a crossing more than once.
Input
The first line of the input contains the number of problems p to be solved.
- The first line of every problem contains the number s of streets (
), followed by the number a of avenues
(
), followed by the number b (
)
of banks to be robbed. - Then b lines follow, each containing the location of a bank in the form of two numbers x (the number of the street) andy (the number of the avenue). Evidently
and
.
Output
The output file consists of p lines. Each line contains the text possible or not
possible. If it is possible to plan non-crossing get-away routes, this line should contain the word: possible. If this is not possible, the line
should contain the words not possible.
Sample Input
2
6 6 10
4 1
3 2
4 2
5 2
3 4
4 4
5 4
3 6
4 6
5 6
5 5 5
3 2
2 3
3 3
4 3
3 4
Sample Output
possible
not possible

Miguel A. Revilla
1998-03-10
UVa563_Crimewave(网络流/最大流)(小白书图论专题)的更多相关文章
- UVa753/POJ1087_A Plug for UNIX(网络流最大流)(小白书图论专题)
解题报告 题意: n个插头m个设备k种转换器.求有多少设备无法插入. 思路: 定义源点和汇点,源点和设备相连,容量为1. 汇点和插头相连,容量也为1. 插头和设备相连,容量也为1. 可转换插头相连,容 ...
- UVa10099_The Tourist Guide(最短路/floyd)(小白书图论专题)
解题报告 题意: 有一个旅游团如今去出游玩,如今有n个城市,m条路.因为每一条路上面规定了最多可以通过的人数,如今想问这个旅游团人数已知的情况下最少须要运送几趟 思路: 求出发点到终点全部路其中最小值 ...
- UVa567_Risk(最短路)(小白书图论专题)
解题报告 option=com_onlinejudge&Itemid=8&category=7&page=show_problem&problem=508"& ...
- UVa10048_Audiophobia(最短路/floyd)(小白书图论专题)
解题报告 题意: 求全部路中最大分贝最小的路. 思路: 类似floyd算法的思想.u->v能够有另外一点k.通过u->k->v来走,拿u->k和k->v的最大值和u-&g ...
- UVa10397_Connect the Campus(最小生成树)(小白书图论专题)
解题报告 题目传送门 题意: 使得学校网络互通的最小花费,一些楼的线路已经有了. 思路: 存在的线路当然全都利用那样花费肯定最小,把存在的线路当成花费0,求最小生成树 #include <ios ...
- UVa409_Excuses, Excuses!(小白书字符串专题)
解题报告 题意: 找包括单词最多的串.有多个按顺序输出 思路: 字典树爆. #include <cstdio> #include <cstring> #include < ...
- (通俗易懂小白入门)网络流最大流——EK算法
网络流 网络流是模仿水流解决生活中类似问题的一种方法策略,来看这么一个问题,有一个自来水厂S,它要向目标T提供水量,从S出发有不确定数量和方向的水管,它可能直接到达T或者经过更多的节点的中转,目前确定 ...
- 正睿OI国庆DAY2:图论专题
正睿OI国庆DAY2:图论专题 dfs/例题 判断无向图之间是否存在至少三条点不相交的简单路径 一个想法是最大流(后来说可以做,但是是多项式时间做法 旁边GavinZheng神仙在谈最小生成树 陈主力 ...
- POJ 1459-Power Network(网络流-最大流-ISAP)C++
Power Network 时间限制: 1 Sec 内存限制: 128 MB 题目描述 A power network consists of nodes (power stations, cons ...
随机推荐
- 多路开关模式的switch语句
在实例10中,将break语句去掉之后,会将符合检验条件后的所有语句都输出.利用这个特点,可以设计多路开关模式的switch语句,例如:在平年一年12个月,1.3.5.7.8.10.12月是31天,4 ...
- Codeforces_766_D_(并查集)
D. Mahmoud and a Dictionary time limit per test 4 seconds memory limit per test 256 megabytes input ...
- es6常用的语法
刚开始用vue或者react,很多时候我们都会把ES6这个大兄弟加入我们的技术栈中.但是ES6那么多那么多特性,我们需要全部都掌握吗?秉着二八原则,掌握好常用的,有用的这个可以让我们快速起飞. 接下来 ...
- CAD得到所有组名(网页版)
主要用到函数说明: _DMxDrawX::GetAllGroupName 得到所有组名. js代码实现如下: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 ...
- Redis系列(三)--消息队列、排行榜等
Redis命令执行生命周期: 发送命令--->排队(单线程)--->执行命令--->返回结果 慢查询: 只是针对命令执行阶段 慢查询日志通过一个固定长度的FIFO queue,这个q ...
- JavaScipt30(第四个案例)(主要知识点:数组原型链上的一些方法)
承接上文,下面是第四个案例 附上项目链接: https://github.com/wesbos/JavaScript30 const inventors = [ { first: 'Albert', ...
- css3属性之-webkit-margin-before
当没有对浏览器进行css边距初始化时,在web-kit浏览器上会出现下面的浏览器默认边距设置: ul, menu, dir { display: block; list-style-type: dis ...
- 【搜索、bfs】Find The Multiple
Problem Given a positive integer n, write a program to find out a nonzero multiple m of n whose de ...
- 关于JavaScript的一些笔试题
1.原题: function Foo() { getName = function () { alert (); }; return this; } Foo.getName = function () ...
- dp专题备忘录
hdu 1024:基础dp题 hdu 1029:主元素问题,很快的解法,计数器 hdu 1069:LIS hdu 1074:数位dp,数位dp基础 hdu 1257:简单LIS,要仔细分析为什么是求最 ...