解题报告

思路:

要求抢劫银行的伙伴(想了N多名词来形容,强盗,贼匪,小偷,sad。都认为不合适)不在同一个路口相碰面,能够把点拆成两个点,一个入点。一个出点。

再设计源点s连向银行位置。再矩阵外围套上一圈。连向汇点t

矩阵内的点,出点和周围的点的出点相连。

#include <iostream>
#include <cstring>
#include <cstdio>
#include <queue>
#define M 500000
#define N 10000
#define inf 0x3f3f3f3f
using namespace std;
int n,m,h,w,head[N],pre[N],l[N],mmap[N][N],cnt,s,t;
struct node {
int v,w,next;
} edge[M];
int dx[]= {-1,0,1,0};
int dy[]= {0,1,0,-1};
void add(int u,int v,int w) {
edge[cnt].v=v;
edge[cnt].w=w;
edge[cnt].next=head[u];
head[u]=cnt++; edge[cnt].v=u;
edge[cnt].w=0;
edge[cnt].next=head[v];
head[v]=cnt++;
}
int bfs() {
memset(l,-1,sizeof(l));
l[s]=0;
int i,u,v;
queue<int >Q;
Q.push(s);
while(!Q.empty()) {
u=Q.front();
Q.pop();
for(i=head[u]; i!=-1; i=edge[i].next) {
v=edge[i].v;
if(l[v]==-1&&edge[i].w) {
l[v]=l[u]+1;
Q.push(v);
}
}
}
return l[t]>0;
}
int dfs(int u,int f) {
int a,flow=0;
if(u==t)return f;
for(int i=head[u]; i!=-1; i=edge[i].next) {
int v=edge[i].v;
if(l[v]==l[u]+1&&edge[i].w&&(a=dfs(v,min(f,edge[i].w)))) {
edge[i].w-=a;
edge[i^1].w+=a;
flow+=a;
f-=a;
if(!f)break;
}
}
if(!flow)l[u]=-1;
return flow;
}
int main() {
int i,j,T,k,x,y;
scanf("%d",&T);
while(T--) {
cnt=k=0;
memset(head,-1,sizeof(head));
scanf("%d%d%d",&h,&w,&m);
h+=2;
w+=2;
for(i=0; i<h; i++) {
for(j=0; j<w; j++) {
mmap[i][j]=++k;
}
}
s=0;
t=k*2+1;
for(i=1; i<h-1; i++) {
for(j=1; j<w-1; j++) {
add(mmap[i][j],mmap[i][j]+k,1);
for(int l=0; l<4; l++) {
int x=i+dx[l];
int y=j+dy[l];
if(x>=1&&x<h-1&&y>=1&&y<w-1)
add(mmap[i][j]+k,mmap[x][y],1);
}
}
}
for(i=1; i<w-1; i++) {
add(mmap[1][i]+k,mmap[0][i],1);
add(mmap[0][i],t,1);
add(mmap[h-2][i]+k,mmap[h-1][i],1);
add(mmap[h-1][i],t,1);
}
for(i=1; i<h-1; i++) {
add(mmap[i][1]+k,mmap[i][0],1);
add(mmap[i][0],t,1);
add(mmap[i][w-2]+k,mmap[i][w-1],1);
add(mmap[i][w-1],t,1);
}
for(i=0; i<m; i++) {
scanf("%d%d",&x,&y);
add(s,mmap[x][y],1);
}
int ans=0,a;
while(bfs())
while(a=dfs(s,inf))
ans+=a;
if(ans==m)
printf("possible\n");
else printf("not possible\n");
}
return 0;
}

 Crimewave 

Nieuw Knollendam is a very modern town. This becomes clear already when looking at the layout of its map, which is just a rectangular grid of streets and avenues. Being an important trade centre, Nieuw Knollendam
also has a lot of banks. Almost on every crossing a bank is found (although there are never two banks at the same crossing). Unfortunately this has attracted a lot of criminals. Bank hold-ups are quite common, and often on one day several banks are robbed.
This has grown into a problem, not only to the banks, but to the criminals as well. After robbing a bank the robber tries to leave the town as soon as possible, most of the times chased at high speed by the police. Sometimes two running criminals pass the
same crossing, causing several risks: collisions, crowds of police at one place and a larger risk to be caught.

To prevent these unpleasant situations the robbers agreed to consult together. Every Saturday night they meet and make a schedule for the week to come: who is going to rob which bank on which day? For every day they try to plan the get-away routes, such that
no two routes use the same crossing. Sometimes they do not succeed in planning the routes according to this condition, although they believe that such a planning should exist.

Given a grid of  and the crossings where the banks to be robbed are located, find out whether or not it is possible to plan a
get-away route from every robbed bank to the city-bounds, without using a crossing more than once.

Input

The first line of the input contains the number of problems p to be solved.

  • The first line of every problem contains the number s of streets ( ), followed by the number a of avenues
    (), followed by the number b ()
    of banks to be robbed.
  • Then b lines follow, each containing the location of a bank in the form of two numbers x (the number of the street) andy (the number of the avenue). Evidently  and .

Output

The output file consists of p lines. Each line contains the text possible or not
possible
. If it is possible to plan non-crossing get-away routes, this line should contain the word: possible. If this is not possible, the line
should contain the words not possible.

Sample Input

2
6 6 10
4 1
3 2
4 2
5 2
3 4
4 4
5 4
3 6
4 6
5 6
5 5 5
3 2
2 3
3 3
4 3
3 4

Sample Output

possible
not possible

Miguel A. Revilla 

1998-03-10

UVa563_Crimewave(网络流/最大流)(小白书图论专题)的更多相关文章

  1. UVa753/POJ1087_A Plug for UNIX(网络流最大流)(小白书图论专题)

    解题报告 题意: n个插头m个设备k种转换器.求有多少设备无法插入. 思路: 定义源点和汇点,源点和设备相连,容量为1. 汇点和插头相连,容量也为1. 插头和设备相连,容量也为1. 可转换插头相连,容 ...

  2. UVa10099_The Tourist Guide(最短路/floyd)(小白书图论专题)

    解题报告 题意: 有一个旅游团如今去出游玩,如今有n个城市,m条路.因为每一条路上面规定了最多可以通过的人数,如今想问这个旅游团人数已知的情况下最少须要运送几趟 思路: 求出发点到终点全部路其中最小值 ...

  3. UVa567_Risk(最短路)(小白书图论专题)

    解题报告 option=com_onlinejudge&Itemid=8&category=7&page=show_problem&problem=508"& ...

  4. UVa10048_Audiophobia(最短路/floyd)(小白书图论专题)

    解题报告 题意: 求全部路中最大分贝最小的路. 思路: 类似floyd算法的思想.u->v能够有另外一点k.通过u->k->v来走,拿u->k和k->v的最大值和u-&g ...

  5. UVa10397_Connect the Campus(最小生成树)(小白书图论专题)

    解题报告 题目传送门 题意: 使得学校网络互通的最小花费,一些楼的线路已经有了. 思路: 存在的线路当然全都利用那样花费肯定最小,把存在的线路当成花费0,求最小生成树 #include <ios ...

  6. UVa409_Excuses, Excuses!(小白书字符串专题)

    解题报告 题意: 找包括单词最多的串.有多个按顺序输出 思路: 字典树爆. #include <cstdio> #include <cstring> #include < ...

  7. (通俗易懂小白入门)网络流最大流——EK算法

    网络流 网络流是模仿水流解决生活中类似问题的一种方法策略,来看这么一个问题,有一个自来水厂S,它要向目标T提供水量,从S出发有不确定数量和方向的水管,它可能直接到达T或者经过更多的节点的中转,目前确定 ...

  8. 正睿OI国庆DAY2:图论专题

    正睿OI国庆DAY2:图论专题 dfs/例题 判断无向图之间是否存在至少三条点不相交的简单路径 一个想法是最大流(后来说可以做,但是是多项式时间做法 旁边GavinZheng神仙在谈最小生成树 陈主力 ...

  9. POJ 1459-Power Network(网络流-最大流-ISAP)C++

    Power Network 时间限制: 1 Sec  内存限制: 128 MB 题目描述 A power network consists of nodes (power stations, cons ...

随机推荐

  1. 329.-io流(字符-练习-复制文本文件二)

    //每次读取的字节长度,一般都是1024的倍数 private static final int BUF_SIZE = 1024; public static void main(String[] a ...

  2. Linux下ifconfig不显示ip地址问题总结

    问题一:ifconfig之后只显示lo,没有看到eth0 ? eth0设置不正确,导致无法正常启动,修改eth0配置文件就好 ubuntu 12.04的网络设置文件是/etc/network/inte ...

  3. wparam , lparam 传递消息

    01.WM_PAINT消息 LOWORD(lParam)是客户区的宽,HIWORD(lParam)是客户区的高 02.滚动条WM_VSCROLL或WM_HSCROLL消息 LOWORD(wParam) ...

  4. BZOJ 2693: jzptab 莫比乌斯反演 + 积性函数 +筛法

    Code: #include<bits/stdc++.h> #define ll long long #define M 10001000 #define maxn 10200100 #d ...

  5. python json格式和csv文件转换

    python json格式和csv文件转换 上代码 import csv import json ''' json格式示例 [{ "firstName":"Bill&qu ...

  6. BeanFactory和ApplicationContext

    BeanFactory是一个类的通用工厂,可以创建并管理各种类的对象 Bean工厂是Spring框架最核心的接口,它提供了高级Ioc的配置机制.BeanFeactory使管理不同类的Java对象成为可 ...

  7. ios xmpp 发送语音图片解决方案

    ios xmpp 发送语音,图片解决方案,有需要的朋友可以参考下. 目前做IM多是用的xmpp. 因为项目需求需要实现语音和图片的发送. 发送语音图片有三种方法. 1,xmpp smack.文件传输方 ...

  8. React-native SyntaxError: Unexpected token ...

    更新 node.js 版本到  v6.11.1. https://github.com/facebook/react-native/issues/15040

  9. Cash Machine POJ - 1276

    解法 多重背包板子题 多重背包板子 如果上限的体积大于了给定的体积那么套完全背包 否则二进制优化成01背包 代码 #include <iostream> #include <cstr ...

  10. Re0:DP学习之路 Proud Merchants HDU - 3466

    解法 排序+01背包 这里的排序规则用q-p升序排列这里是一个感觉是一个贪心的策略,为什么这样做目前也无法有效的证明或者说出来 然后就是01背包加了一个体积必须大于什么值可以装那么加一个max(p,q ...