HDOJ 5383 Yu-Gi-Oh! 最大费用最大流
网络流裸题:
分两部分建图,求不要求满流的最大费用最大流.....
Yu-Gi-Oh!
Time Limit: 4000/2000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Others)
Total Submission(s): 401 Accepted Submission(s): 108
Stilwell has n monsters
on the desk, each monster has its leveli and ATKi.
There are two kinds of monsters, Tuner monsters and Non-Tuner monsters.
Now, Stilwell plans to finish some "Synchro Summon", and "Synchro Summon" is a kind of special summon following these rules (a little different from the standard YGO rules):
(1) A "Synchro Summon" needs two monsters as the material of this summon, and they must be one Tuner monster and one Non-Tuner monster.
In other words, we can cost one Tuner monster and one Non-Tuner monster to get a Synchro monster ("cost" means remove form the desk, "get" means put on to the desk).
(2) To simplify this problem, Synchro monsters are neither Tuner monsters nor Non-Tuner monsters.
(3) The level sum of two material must be equal to the level of Synchro monster we summon.
For example:
A Level 3 Tuner monster + A
Level 2 Non-Tuner monster = A
Level 5 Synchro Monster
A Level 2 Tuner monster + A
Level 4 Non-Tuner monster = A
Level 6 Synchro Monster
A Level 4 Tuner monster + A
Level 4 Non-Tuner monster = A
Level 8 Synchro Monster
(4) The material of some Synchro monster has some limits, the material must contain some specific monster.
For example:
A Level 5 Synchro Monster α requires
A Level 3 Tuner monster α to
be its material
A Level 6 Synchro Monster β requires
A Level 4 Non-Tuner monster β to
be its material
A Level 8 Synchro Monster γ requires
A Level 4 Tuner monster γ + A
Level 4 Non-Tuner monster γ to
be its material
A Level 5 Synchro Monster φ doesn't
require any monsters to be its material
Then
A Level 3 Tuner monster α + A
Level 2 Non-Tuner monster = A
Level 5 Synchro Monster α
A Level 3 Tuner monster δ + A
Level 2 Non-Tuner monster ≠ A
Level 5 Synchro Monster α
A Level 2 Tuner monster + A
Level 4 Non-Tuner monster β = A
Level 6 Synchro Monster β
A Level 3 Tuner monster + A
Level 3 Non-Tuner monster ζ ≠ A
Level 6 Synchro Monster β
A Level 4 Tuner monster γ + A
Level 4 Non-Tuner monster γ = A
Level 8 Synchro Monster γ
A Level 4 Tuner monster σ + A
Level 4 Non-Tuner monster γ ≠ A
Level 8 Synchro Monster γ
A Level 4 Tuner monster γ + A
Level 4 Non-Tuner monster ϕ ≠ A
Level 8 Synchro Monster γ
A Level 3 Tuner monster + A
Level 2 Non-Tuner monster = A
Level 5 Synchro Monster φ
A Level 3 Tuner monster α + A
Level 2 Non-Tuner monster = A
Level 5 Synchro Monster φ
Stilwell has m kinds
of Synchro Monster cards, the quantity of each Synchro Monster cards is infinity.
Now, given leveli and ATKi of
every card on desk and every kind of Synchro Monster cards. Please finish some Synchro Summons (maybe zero) to maximum ∑ATKi of
the cards on desk.
the number of test cases.
For each test case, the first line contains two integers n, m.
Next n lines,
each line contains three integers tuneri, leveli,
and ATKi,
describe a monster on the desk. If this monster is a Tuner monster, then tuneri=1,
else tuneri=0 for
Non-Tuner monster.
Next m lines,
each line contains integers levelj, ATKj, rj,
and following rj integers
are the required material of this Synchro Monster (the integers given are the identifier of the required material).
The input data guarantees that the required material list is available, two Tuner monsters or two Non-Tuner monsters won't be required. If ri=2 the
level sum of two required material will be equal to the level of Synchro Monster.
T≤10, n,m≤300, 1≤leveli≤12, 0≤ATKi≤5000, 0≤ri≤2
find the maximum ∑ATKi after
some Synchro Summons.
5
2 2
1 3 1300
0 2 900
5 2300 1 1
8 2500 0
2 1
1 3 1300
1 2 900
5 2300 1 1
3 1
1 3 1300
0 2 900
0 2 800
5 2300 1 1
3 1
1 1 233
0 1 233
0 1 200
2 466 2 1 2
6 3
1 3 1300
0 2 900
0 5 1350
1 4 1800
0 10 4000
0 10 1237
5 2300 1 1
8 3000 0
6 2800 0
2300
2200
3200
666
11037
/* ***********************************************
Author :CKboss
Created Time :2015年08月17日 星期一 08时42分00秒
File Name :HDOJ5383.cpp
************************************************ */ #include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <string>
#include <cmath>
#include <cstdlib>
#include <vector>
#include <queue>
#include <set>
#include <map> using namespace std; const int INF=0x3f3f3f3f;
const int maxv=400;
const int maxn=maxv*maxv; struct Edge
{
int to,next,cap,flow,cost;
}edge[maxn]; int n,m;
int Adj[maxv],Size,N; void init()
{
memset(Adj,-1,sizeof(Adj)); Size=0;
} void addedge(int u,int v,int cap,int cost)
{
edge[Size].to=v;
edge[Size].next=Adj[u];
edge[Size].cost=cost;
edge[Size].cap=cap;
edge[Size].flow=0;
Adj[u]=Size++;
} void Add_Edge(int u,int v,int cap,int cost)
{
addedge(u,v,cap,cost);
addedge(v,u,0,-cost);
} int dist[maxv];
int vis[maxv],pre[maxv]; bool spfa(int s,int t)
{
queue<int> q;
for(int i=0;i<N;i++)
{
dist[i]=-INF; vis[i]=false; pre[i]=-1;
}
dist[s]=0; vis[s]=true; q.push(s);
while(!q.empty())
{
int u=q.front();
q.pop();
vis[u]=false;
for(int i=Adj[u];~i;i=edge[i].next)
{
int v=edge[i].to;
if(edge[i].cap>edge[i].flow&&
dist[v]<dist[u]+edge[i].cost)
{
dist[v]=dist[u]+edge[i].cost;
pre[v]=i;
if(!vis[v])
{
vis[v]=true;
q.push(v);
}
}
}
}
if(pre[t]==-1) return false;
return true;
} int MinCostMaxFlow(int s,int t,int &cost)
{
int flow=0;
cost=0;
while(spfa(s,t))
{
int Min=INF;
for(int i=pre[t];~i;i=pre[edge[i^1].to])
{
if(Min>edge[i].cap-edge[i].flow)
Min=edge[i].cap-edge[i].flow;
}
if(dist[t]<0) break;
for(int i=pre[t];~i;i=pre[edge[i^1].to])
{
edge[i].flow+=Min;
edge[i^1].flow-=Min;
cost+=edge[i].cost*Min;
}
flow+=Min;
}
return flow;
} struct Moster
{
Moster(){}
Moster(int l,int a):level(l),ATK(a){}
int level,ATK;
}; vector<Moster> m0,m1;
int turn[maxv],pos[maxv];
int GG[maxv][maxv]; int main()
{
//freopen("in.txt","r",stdin);
//freopen("out.txt","w",stdout); int T_T;
scanf("%d",&T_T);
while(T_T--)
{
scanf("%d%d",&n,&m);
init(); m0.clear(); m1.clear();
memset(GG,0,sizeof(GG));
int sumATK=0;
int sz1=0,sz2=0;
for(int i=0,t,l,a;i<n;i++)
{
scanf("%d%d%d",&t,&l,&a);
if(t==0)
{
m0.push_back(Moster(l,a));
turn[i]=0; pos[i]=sz1++;
}
else if(t==1)
{
m1.push_back(Moster(l,a));
turn[i]=1; pos[i]=sz2++;
}
sumATK+=a;
}
for(int i=0,l,a,r;i<m;i++)
{
scanf("%d%d%d",&l,&a,&r);
if(r==0)
{
for(int j=0;j<sz1;j++)
{
for(int k=0;k<sz2;k++)
{
int u=j+1,v=k+sz1+1;
if(m0[j].level+m1[k].level==l)
{
if(a>m0[j].ATK+m1[k].ATK)
{
GG[u][v]=max(GG[u][v],a-m0[j].ATK-m1[k].ATK);
}
}
}
}
}
else if(r==1)
{
int x;
scanf("%d",&x); x--;
if(turn[x]==0)
{
int P=pos[x];
for(int j=0;j<sz2;j++)
{
int u=P+1,v=j+sz1+1;
if(m0[P].level+m1[j].level==l)
{
if(a>m0[P].ATK+m1[j].ATK)
{
GG[u][v]=max(GG[u][v],a-m0[P].ATK-m1[j].ATK);
}
}
}
}
else if(turn[x]==1)
{
int P=pos[x];
for(int j=0;j<sz1;j++)
{
int u=j+1,v=P+sz1+1;
if(m0[j].level+m1[P].level==l)
{
if(a>m0[j].ATK+m1[P].ATK)
{
GG[u][v]=max(GG[u][v],a-m0[j].ATK-m1[P].ATK);
}
}
}
}
}
else if(r==2)
{
int x,y;
scanf("%d%d",&x,&y); x--; y--;
if(turn[x]==1) swap(x,y);
int u=pos[x]+1,v=sz1+pos[y]+1;
if(a>m0[pos[x]].ATK+m1[pos[y]].ATK)
{
GG[u][v]=max(GG[u][v],a-m0[pos[x]].ATK-m1[pos[y]].ATK);
}
}
} for(int i=1;i<=sz1;i++)
{
for(int j=sz1+1;j<=sz1+sz2;j++)
{
if(GG[i][j]>0) Add_Edge(i,j,1,GG[i][j]);
}
} int S=0,T=sz1+sz2+1;
for(int i=1;i<=sz1;i++) Add_Edge(0,i,1,0);
for(int i=sz1+1;i<=sz1+sz2;i++) Add_Edge(i,T,1,0); int flow,cost; N=sz1+sz2+2;
flow=MinCostMaxFlow(S,T,cost);
printf("%d\n",sumATK+cost);
} return 0;
}
HDOJ 5383 Yu-Gi-Oh! 最大费用最大流的更多相关文章
- hdoj 1533 Going Home 【最小费用最大流】【KM入门题】
Going Home Time Limit: 10000/5000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others) Tota ...
- Matrix Again(最大费用最大流)
Matrix Again Time Limit: 5000/2000 MS (Java/Others) Memory Limit: 102400/102400 K (Java/Others) Tota ...
- HDU3376 最小费用最大流 模板2
Matrix Again Time Limit: 5000/2000 MS (Java/Others) Memory Limit: 102400/102400 K (Java/Others)To ...
- [板子]最小费用最大流(Dijkstra增广)
最小费用最大流板子,没有压行.利用重标号让边权非负,用Dijkstra进行增广,在理论和实际上都比SPFA增广快得多.教程略去.转载请随意. #include <cstdio> #incl ...
- bzoj1927最小费用最大流
其实本来打算做最小费用最大流的题目前先来点模板题的,,,结果看到这道题二话不说(之前打太多了)敲了一个dinic,快写完了发现不对 我当时就这表情→ =_=你TM逗我 刚要删突然感觉dinic的模 ...
- 【Codeforces717G】Underfail Hash + 最大费用最大流
G. Underfail time limit per test:1 second memory limit per test:256 megabytes input:standard input o ...
- ACM/ICPC 之 卡卡的矩阵旅行-最小费用最大流(可做模板)(POJ3422)
将每个点拆分成原点A与伪点B,A->B有两条单向路(邻接表实现时需要建立一条反向的空边,并保证环路费用和为0),一条残留容量为1,费用为本身的负值(便于计算最短路),另一条残留容量+∞,费用为0 ...
- HDU5900 QSC and Master(区间DP + 最小费用最大流)
题目 Source http://acm.hdu.edu.cn/showproblem.php?pid=5900 Description Every school has some legends, ...
- P3381 【模板】最小费用最大流
P3381 [模板]最小费用最大流 题目描述 如题,给出一个网络图,以及其源点和汇点,每条边已知其最大流量和单位流量费用,求出其网络最大流和在最大流情况下的最小费用. 输入输出格式 输入格式: 第一行 ...
随机推荐
- LN : leetcode 538 Convert BST to Greater Tree
lc 538 Convert BST to Greater Tree 538 Convert BST to Greater Tree Given a Binary Search Tree (BST), ...
- 创建对象——单例(Singleton)模式
单例(Singleton)模式: 保证一个类在系统里只能有一个对象被实例化. 如:缓存池.数据库连接池.线程池.一些应用服务实例等. 难点:在多线程环境中,保证实例的唯一性. ...
- 2017-11-28 Html-浅谈如何正确给table加边框
一般来说,给表格加边框都会出现不同的问题,以下是给表格加边框后展现比较好的方式 <style> table,table tr th, table tr td { border:1px so ...
- Python学习日记之忽略删除字符串空白
使用Python自带的函数strip可以剔除字符串开头.结尾.两端的空白 使用场景:用户输入验证 strip : 去除字符串两端的空白 rstrip : 去除字符串末尾(右端)的空白 lstrip : ...
- 我的DBDA类
<?php class DBDA { public $host="localhost"; public $uid="root"; public $pwd= ...
- C++标准库 vector排序
前天要做一个对C++ STL的vector容器做一个排序操作,之前一直把vector当做一个容量可自动变化的数组,是的,数组,所以打算按照对数组进行排序的方法:用快速排序或是冒泡排序等算法自己写一个排 ...
- 导出功能在数据库内容为数字,excel表格中是汉字的时候
代码如下: @ExcelField(title = "饮水器评价",dictType = "waterer_rate" ,align = 2, sort = 2 ...
- 04C语言输入输出
C语言输入输出 输入字符getchar() #include <stdio.h> int main(){ putchar(getchar()); putchar(getchar()); ; ...
- c++运行程序闪退
以最简单程序为例 法一:在主函数末尾下一行getchar();即可.需要注意的是这种方法并不适合所有程序, 法二:<1>先在程序开头加上头文件#includ ...
- 深入理解PHP之strpos
概述 在php中经常用 strpos 判断字符串是否在另一个字符串中存在, 本文介绍 strpos 函数及其实现. strpos应用 <?php /* strpos示例 */ // test e ...