Friends

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)

Total Submission(s): 1717    Accepted Submission(s): 854

Problem Description
There are n
people and m
pairs of friends. For every pair of friends, they can choose to become online friends (communicating using online applications) or offline friends (mostly using face-to-face communication). However, everyone in these
n
people wants to have the same number of online and offline friends (i.e. If one person has
x
onine friends, he or she must have x
offline friends too, but different people can have different number of online or offline friends). Please determine how many ways there are to satisfy their requirements.

 
Input
The first line of the input is a single integer
T (T=100),
indicating the number of testcases.



For each testcase, the first line contains two integers
n (1≤n≤8)
and m (0≤m≤n(n−1)2),
indicating the number of people and the number of pairs of friends, respectively. Each of the next
m
lines contains two numbers x
and y,
which mean x
and y
are friends. It is guaranteed that x≠y
and every friend relationship will appear at most once.
 
Output
For each testcase, print one number indicating the answer.
 
Sample Input
2
3 3
1 2
2 3
3 1
4 4
1 2
2 3
3 4
4 1
 
Sample Output
0
2
 
Author
XJZX
 
Source
 
Recommend
wange2014   |   We have carefully selected several similar problems for you:  5395 5394 5393 

pid=5392" target="_blank">5392 

pid=5391" target="_blank">5391 

 

暴搜

#include<cstdio>
#include<cstring>
#include<cstdlib>
#include<algorithm>
#include<functional>
#include<iostream>
#include<cmath>
#include<cctype>
#include<ctime>
using namespace std;
#define For(i,n) for(int i=1;i<=n;i++)
#define Fork(i,k,n) for(int i=k;i<=n;i++)
#define Rep(i,n) for(int i=0;i<n;i++)
#define ForD(i,n) for(int i=n;i;i--)
#define RepD(i,n) for(int i=n;i>=0;i--)
#define Forp(x) for(int p=pre[x];p;p=next[p])
#define Forpiter(x) for(int &p=iter[x];p;p=next[p])
#define Lson (x<<1)
#define Rson ((x<<1)+1)
#define MEM(a) memset(a,0,sizeof(a));
#define MEMI(a) memset(a,127,sizeof(a));
#define MEMi(a) memset(a,128,sizeof(a));
#define INF (2139062143)
#define F (100000007)
#define MAXN (100+10)
#define MAXM (100+10)
typedef long long ll;
ll mul(ll a,ll b){return (a*b)%F;}
ll add(ll a,ll b){return (a+b)%F;}
ll sub(ll a,ll b){return (a-b+llabs(a-b)/F*F+F)%F;}
void upd(ll &a,ll b){a=(a%F+b%F)%F;}
int n,m;
int e[MAXM][2];
int degree[MAXN],totdeg[MAXN];
ll ans;
bool check(int x,int y)
{
return ( ( totdeg[x]||( !degree[x] )) && ( totdeg[y]||( !degree[y] )) ); }
void dfs(int p)
{
if (p==m)
{
For(i,n)
if (i!=e[p][0]&&i!=e[p][1]&°ree[i]) return ;
if (degree[e[p][0]]==degree[e[p][1]]&&abs(degree[e[p][0]])==1) {
ans++;
}
return ;
}
// if (p==m+1)
// {
// ans++;
// return;
// }
int x=e[p][0],y=e[p][1];
totdeg[x]--;totdeg[y]--;
degree[x]++;degree[y]++;
if (check(x,y)) dfs(p+1);
degree[x]-=2;degree[y]-=2;
if (check(x,y)) dfs(p+1);
degree[x]++;degree[y]++;
totdeg[x]++;totdeg[y]++;
}
int main()
{
// freopen("F.in","r",stdin); int T;cin>>T;
while(T--) {
ans=0; MEM(degree) MEM(totdeg)
cin>>n>>m;
For(i,m) scanf("%d%d",&e[i][0],&e[i][1]),totdeg[e[i][0]]++,totdeg[e[i][1]]++; bool flag=0;
For(i,n) if (totdeg[i] & 1) {
flag=1;puts("0");break;
}
if (flag) continue; if (m) dfs(1); else ans=1;
printf("%lld\n",ans);
} return 0;
}

HDU 5305(Friends-暴搜)的更多相关文章

  1. hdu 1979 剪枝暴搜

    Fill the blanks Time Limit: 3000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)T ...

  2. HDU 4284 Travel (Folyd预处理+dfs暴搜)

    题意:给你一些N个点,M条边,走每条边要花费金钱,然后给出其中必须访问的点,在这些点可以打工,但是需要先拿到证书,只可以打一次,也可以选择不打工之直接经过它.一个人从1号点出发,给出初始金钱,问你能不 ...

  3. HDU 4620 Fruit Ninja Extreme 暴搜

    题目大意:题目就是描述的水果忍者. N表示以下共有 N种切水果的方式. M表示有M个水果需要你切. W表示两次连续连击之间最大的间隔时间. 然后下N行描述的是 N种切发 第一个数字C表示这种切法可以切 ...

  4. hdu 5952 Counting Cliques 求图中指定大小的团的个数 暴搜

    题目链接 题意 给定一个\(n个点,m条边\)的无向图,找出其中大小为\(s\)的完全图个数\((n\leq 100,m\leq 1000,s\leq 10)\). 思路 暴搜. 搜索的时候判断要加进 ...

  5. HDU - 6185 Covering(暴搜+递推+矩阵快速幂)

    Covering Bob's school has a big playground, boys and girls always play games here after school. To p ...

  6. hdu 4400 离散化+二分+BFS(暴搜剪枝还超时的时候可以借鉴一下)

    Mines Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)Total Subm ...

  7. HDU4403(暴搜)

    A very hard Aoshu problem Time Limit:1000MS     Memory Limit:32768KB     64bit IO Format:%I64d & ...

  8. 【BZOJ-3033】太鼓达人 欧拉图 + 暴搜

    3033: 太鼓达人 Time Limit: 1 Sec  Memory Limit: 128 MBSubmit: 204  Solved: 154[Submit][Status][Discuss] ...

  9. c++20701除法(刘汝佳1、2册第七章,暴搜解决)

    20701除法 难度级别: B: 编程语言:不限:运行时间限制:1000ms: 运行空间限制:51200KB: 代码长度限制:2000000B 试题描述     输入正整数n,按从小到大的顺序输出所有 ...

随机推荐

  1. Paxos,Raft,Zab一致性协议-Raft篇

    Raft是一个一致性算法,旨在易于理解.它提供了Paxos的容错和性能.不同之处在于它被分解为相对独立的子问题,它清楚地解决了实际系统所需的所有主要部分.我们希望Raft能够为更广泛的受众提供共识,并 ...

  2. CF540B School Marks

    思路: 贪心. 实现: #include <iostream> #include <cstdio> #include <vector> #include <a ...

  3. 在Redux中使用插件createAction之后

    我们知道在React的Redux的中的action在项目开发过程中,一般时使用createAction来生成 举个栗子,小李子: const createTodo=createACtion('CREA ...

  4. Spartan6系列之芯片配置模式详解

    1.   配置概述 Spartan6系列FPGA通过把应用程序数据导入芯片内部存储器完成芯片的配置.Spart-6 FPGA可以自己从外部非易失性存储器导入编程数据,或者通过外界的微处理器.DSP等对 ...

  5. Java 基础入门随笔(4) JavaSE版——程序流程控制

    上一节对于运算符有了大致的了解,这一节针对程序流程控制进行复习!程序流程控制包括顺序结构.判断结构(if).选择结构(switch).循环结构. 1.判断结构 ①if语句的第一种格式:        ...

  6. Clickhouse DDL&DML

    (1)添加列: alter table [db.]table_name add column column_name [type] [default_expr] [after name_after] ...

  7. The Runtime Interaction Model for Views-UI布局事件处理流程

    The Runtime Interaction Model for Views Any time a user interacts with your user interface, or any t ...

  8. MFC_1.2 消息映射宏 数据绑定和交换

    消息映射宏 有三个主要的宏 类内声明 DECLARE_MESSAGE_MAP 表示使用消息映射 在CPP文件中使用 BEGIN_MESSAGE_MAP 和 END_MESSAGE_MAP 包含对应的消 ...

  9. pyhon模块

    模块基础 什么是模块 模块式一系列功能的集合体,而函数是某一个功能的集合体,因此模块可以看成是一堆函数的集合体.一个py文件内部可以放一堆函数,因此一个py文件就可以看成是一个模块.如果这个py文件的 ...

  10. nginx_gzip压缩提升网站的传输速度

    gzip on; gzip_min_length 1k; gzip_buffers 16k; #gzip_http_version 1.0; gzip_comp_level ; gzip_types ...