这道题被学长称为“科幻题”

题面

事实上,并不是做法科幻,而是“为什么能这么做?”的解释非常科幻

换句话说,复杂度分析灰常诡异以至于吉如一大佬当场吃书

线段树维护的量:区间和sum,区间最大值max1,区间次大值max2,最大值出现次数cnt。

现在假设区间[l,r]对x取min,那么有如下三种情况:

1.max1<=x,不用修改,return ;

2.max2<x<max1,修改只会影响所有最大值,sum+=cnt*(max1-x),更新max1打标记;

3.max2>=x,暴力递归修改左右儿子.

吃书后只能保证复杂度O(nlog2n)

 #include<cstdio>
#include<cstring>
#define ls(k) k<<1
#define rs(k) k<<1|1 const int L=<<|;
char buffer[L],*S,*TT;
#define getchar() ((S==TT&&(TT=(S=buffer)+fread(buffer,1,L,stdin),S==TT))?EOF:*S++) const int N=;
typedef long long ll;
int max(int a,int b){return a>b?a:b;}
int min(int a,int b){return a<b?a:b;}
int T,n,m,a[N];
struct segment_tree
{
int max1[N<<],max2[N<<],cnt[N<<];
ll sum[N<<];
void up(int k)
{
sum[k]=sum[ls(k)]+sum[rs(k)];
max1[k]=max(max1[ls(k)],max1[rs(k)]);
max2[k]=max(max2[ls(k)],max2[rs(k)]);
cnt[k]=;
if(max1[ls(k)]!=max1[rs(k)])max2[k]=max(max2[k],min(max1[ls(k)],max1[rs(k)]));
cnt[k]+=(max1[k]==max1[ls(k)]?cnt[ls(k)]:);
cnt[k]+=(max1[k]==max1[rs(k)]?cnt[rs(k)]:);
}
void tag(int k,int val)
{
if(val>=max1[k])return ;
sum[k]+=(ll)(val-max1[k])*cnt[k];
max1[k]=val;
}
void down(int k)
{
tag(ls(k),max1[k]);
tag(rs(k),max1[k]);
}
void build(int k,int l,int r)
{
if(l==r)
{
sum[k]=max1[k]=a[l];
cnt[k]=;max2[k]=-;
return ;
}
int mid=l+r>>;
build(ls(k),l,mid);
build(rs(k),mid+,r);
up(k);
}
void change(int k,int l,int r,int L,int R,int val)
{
if(val>=max1[k])return ;
if(L<=l&&R>=r&&val>max2[k])
{
tag(k,val);
return ;
}
int mid=l+r>>;down(k);
if(L<=mid)change(ls(k),l,mid,L,R,val);
if(R>mid)change(rs(k),mid+,r,L,R,val);
up(k);
}
ll qsum(int k,int l,int r,int L,int R)
{
if(L<=l&&R>=r)return sum[k];
int mid=l+r>>;
down(k);ll res=;
if(L<=mid)res+=qsum(ls(k),l,mid,L,R);
if(R>mid)res+=qsum(rs(k),mid+,r,L,R);
return res;
}
int qmax(int k,int l,int r,int L,int R)
{
if(L<=l&&R>=r)return max1[k];
down(k);
int mid=l+r>>,ans=-;
if(L<=mid)ans=max(ans,qmax(ls(k),l,mid,L,R));
if(R>mid)ans=max(ans,qmax(rs(k),mid+,r,L,R));
return ans;
}
}seg;
inline int read()
{
int x=,f=;char ch=getchar();
while(ch<''||ch>'')
{if(ch=='-')f=-;ch=getchar();}
while(ch>=''&&ch<='')
{x=(x<<)+(x<<)+ch-'';ch=getchar();}
return x*f;
}
void work()
{
n=read();m=read();
for(int i=;i<=n;i++)a[i]=read();
seg.build(,,n);
while(m--)
{
int op=read(),l=read(),r=read();
if(op==)
{
int val=read();
seg.change(,,n,l,r,val);
}
else if(op==)printf("%d\n",seg.qmax(,,n,l,r));
else if(op==)printf("%lld\n",seg.qsum(,,n,l,r));
}
}
int main()
{
T=read();
while(T--)work();
return ;
}

Gorgeous Sequence 题解 (小清新线段树)的更多相关文章

  1. [HDU5360]:Gorgeous Sequence(小清新线段树)

    题目传送门 题目描述: (原题英文) 操作0:输入l,r,t,线段树区间与t取min. 操作1:输入l,r,区间取最大值. 操作2:输入l,r,区间求和. 输入格式: 第一行一个整数T,表示数据组数: ...

  2. [BZOJ3211]:花神游历各国(小清新线段树)

    题目传送门 题目描述: 花神喜欢步行游历各国,顺便虐爆各地竞赛.花神有一条游览路线,它是线型的,也就是说,所有游历国家呈一条线的形状排列,花神对每个国家都有一个喜欢程度(当然花神并不一定喜欢所有国家) ...

  3. [CSP-S模拟测试]:联(小清新线段树)

    题目描述 由于出题人懒所以没有背景.一个无限长的$01$序列,初始全为$0$,每次选择一个区间$[l,r]$进行操作,有三种操作:$\bullet 1\ l\ r$将$[l,r]$中所有元素变成$1$ ...

  4. bzoj4355 Play with sequence(吉司机线段树)题解

    题意: 已知\(n\)个数字,进行以下操作: \(1.\)区间\([L,R]\) 赋值为\(x\) \(2.\)区间\([L,R]\) 赋值为\(max(a[i] + x, 0)\) \(3.\)区间 ...

  5. [NOIP10.6模拟赛]2.equation题解--DFS序+线段树

    题目链接: 咕 闲扯: 终于在集训中敲出正解(虽然与正解不完全相同),开心QAQ 首先比较巧,这题是\(Ebola\)出的一场模拟赛的一道题的树上强化版,当时还口胡出了那题的题解 然而考场上只得了86 ...

  6. 一篇文教你使用python Turtle库画出“精美碎花小清新风格树”快来拿代码!

    Turtle库手册可以查询查询 python图形绘制库turtle中文开发文档及示例大全,手册中现有示例,不需要自己动手就可以查看演示. 使用Turtle画树,看了一下网上的代码,基本上核心的方法是使 ...

  7. 洛谷题解P4314CPU监控--线段树

    题目链接 https://www.luogu.org/problemnew/show/P4314 https://www.lydsy.com/JudgeOnline/problem.php?id=30 ...

  8. Almost Regular Bracket Sequence CodeForces - 1095E (线段树,单点更新,区间查询维护括号序列)

    Almost Regular Bracket Sequence CodeForces - 1095E You are given a bracket sequence ss consisting of ...

  9. HDU5306:Gorgeous Sequence——题解

    http://acm.hdu.edu.cn/showproblem.php?pid=5306 给一个数组,m次操作: 1:l r x,将a[i](l<=i<=r)=min(a[i],x) ...

随机推荐

  1. LVS 源代码分析

    http://blog.chinaunix.net/uid/11207493.html http://zh.linuxvirtualserver.org/blog/3309

  2. Centos7 上安装mysql遇上的问题:mysql无法正常启动

    第一次在Centos上安装mysql遇到的一些问题. 第一步就遇到问题,安装mysql-server报错没有可用包.  [解决方法] 先要安装mysql # wget http://repo.mysq ...

  3. uva 11212 - Editing a Book(迭代加深搜索 IDA*) 迭代加深搜索

    迭代加深搜索 自己看的时候第一遍更本就看不懂..是非常水,但智商捉急也是没有办法的事情. 好在有几个同学已经是做过了这道题而且对迭代加深搜索的思路有了一定的了解,所以在某些不理解的地方询问了一下他们的 ...

  4. wpf 禁用启用webbroswer右键菜单

    //禁用脚本错误等类似的窗口信息 this.webBrowser1.ScriptErrorsSuppressed = true; //禁用右键菜单 this.webBrowser1.IsWebBrow ...

  5. 如何用分布式缓存服务实现Redis内存优化

    Redis是一种支持Key-Value等多种数据结构的存储系统,其数据特性是“ALL IN MEMORY”,因此优化内存十分重要.在对Redis进行内存优化时,先要掌握Redis内存存储的特性比如字符 ...

  6. 《转》OpenStack对象存储——Swift

    OpenStack Object Storage(Swift)是OpenStack开源云计算项目的子项目之中的一个.被称为对象存储.提供了强大的扩展性.冗余和持久性.本文将从架构.原理和实践等几方面讲 ...

  7. 写web项目注意事项

    1.中文名2.文件存放路径(js css img)3.class详细路径(mydiv.myul li)

  8. Spark2.0 VS Spark 1.* -------SparkSession的区别

    Spark .0以前版本: val sparkConf = new SparkConf().setAppName("soyo") val spark = new SparkCont ...

  9. PCB genesis SET取中心点--算法实现

    最新ICS工厂有一项incam脚本新需求,这里介绍5种解决方法解决 需求如下图所示:绿色所圈处是是需求出的中心点(图形间距一致归为一类并计算中心点坐标) 前题条件:1.一个SET里面可能有多个CAM, ...

  10. E20170805-hm

    mechanize vt. 使机械化; 用机械装置;