题目:

https://loj.ac/problem/6165

分析:

最直接的想法就是把1~n的所有数分解质因数,然后每个素数的幂取max

我们首先来看看一共可能有哪些素数?

实际上这些素因数恰好就是1~n内的所有的素数,那ok,线性筛O(n)解决

接下来就是每个p的指数了

对于每个p,最大的其实就是p^k<=n的最大的k,这里直接从小到大枚举k就行了

因为素数的个数有n/ln(n)个,每个素数最多枚举log次,所以总的时间复杂度O(n)

loj6165 一道水题(线性筛)的更多相关文章

  1. LibreOJ #6165. 一道水题

    二次联通门 : LibreOJ #6165. 一道水题 /* LibreOJ #6165. 一道水题 欧拉线性筛 其实题意就是求区间[1, n]所有数的最小公倍数 那么答案就是所有质因子最大幂次的乘积 ...

  2. ny525 一道水题

    一道水题时间限制:1000 ms  |  内存限制:65535 KB 难度:2描述 今天LZQ在玩一种小游戏,但是这游戏数有一点点的大,他一个人玩的累,想多拉一些人进来帮帮他,你能写一个程序帮帮他吗? ...

  3. NYOJ-525一道水题思路及详解

    一道水题 时间限制:1000 ms  |  内存限制:65535 KB 难度:2 描述 今天LZQ在玩一种小游戏,但是这游戏数有一点点的大,他一个人玩的累,想多拉一些人进来帮帮他,你能写一个程序帮帮他 ...

  4. LibieOJ 6165 一道水题 (线性筛)

    题目链接 LOJ6165 题目意思其实就是求LCM(1, 2, 3, ..., n) 直接用线性筛求出1到1e8之间的所有质数 然后对于每个质数p,他对答案的贡献为$p^{i}$ 其中$p^{i}$小 ...

  5. [ Luogu 4626 ] 一道水题 II

    \(\\\) \(Description\) 求一个能被\([1,n]\) 内所有数整除的最小数字,并对 \(100000007\) 取模 \(N\in [1,10^8]\) \(\\\) \(Sol ...

  6. [洛谷P4626]一道水题 II

    题目大意:求$lcm(1,2,3,\cdots,n)\pmod{100000007}$,$n\leqslant10^8$ 题解:先线性筛出质数,然后求每个质数最多出现的次数,可以用$\log_in$来 ...

  7. [Luogu] P4626 一道水题 II

    ---恢复内容开始--- 题目描述 一天,szb 在上学的路上遇到了灰太狼. 灰太狼:帮我们做出这道题就放了你. szb:什么题? 灰太狼:求一个能被 [1,n] 内所有数整除的最小数字,并对 100 ...

  8. 2018焦作网络赛 - Poor God Water 一道水题的教训

    本题算是签到题,但由于赛中花费了过多的时间去滴吧格,造成了不必要的浪费以及智商掉线,所以有必要记录一下坑点 题意:方格从1到n,每一格mjl可以选择吃鱼/巧克力/鸡腿,求走到n格时满足 1.每三格不可 ...

  9. 牛客小白月赛9H论如何出一道水题(两个连续自然数互质)

    题面 记录一下...连续得两个自然数互质,这题再特判一下1的情况 #include<bits/stdc++.h> using namespace std; int main() { lon ...

随机推荐

  1. 移除sql数据所有链接用户

    use master;   go   declare @temp nvarchar(20)   declare myCurse cursor   for   select spid   from sy ...

  2. AWS Data Lake Service Stack

  3. xls表格 拼接字段 拼json =CONCAT("{ code:'",A2,"',","codeName: '",B2,"',","flag: '",C2,"'},")

    xls表格 拼接字段 拼json =CONCAT("{ code:'",A2,"',","codeName: '",B2,"',& ...

  4. Redux 和 mobx的区别

    Redux: Redux将数据保存在单一store中,Mobx将数据保存在分散的多个store中 Redux需要手动处理变化后的操作,Mobx使用observable保存数据,数据变化后自动处理响应的 ...

  5. JDK 5 ~ 11 新特性倾情整理

    为了大家对JDK有一个全面的了解,下面我为大家整理了JDK5~11的所有关键新特性! 先看一下JDK的版本迭代图: 注:   OpenJDK和JDK区别  GPL协议通用性公开许可证(General ...

  6. PyTorch如何构建深度学习模型?

    简介 每过一段时间,就会有一个深度学习库被开发,这些深度学习库往往可以改变深度学习领域的景观.Pytorch就是这样一个库. 在过去的一段时间里,我研究了Pytorch,我惊叹于它的操作简易.Pyto ...

  7. 暑假集训 || 树DP

    树上DP通常用到dfs https://www.cnblogs.com/mhpp/p/6628548.html POJ 2342 相邻两点不能同时被选 经典题 f[0][u]表示不选u的情况数,此时v ...

  8. docker run之后状态总是Exited

    add -it docker run -it -name test -d nginx:latest /bin/bash

  9. java文件上传,自动判断文件类型

    public enum FileType { /** * JEPG. */ JPEG("FFD8FF"), /** * PNG. */ PNG("89504E47&quo ...

  10. js hover 下拉框

    <div class="box"> <div class="a f">111111</div> <div class= ...