学姐的逛街计划


描述


doc 最近太忙了, 每天都有课. 这不怕, doc 可以请假不去上课.
偏偏学校又有规定, 任意连续 n 天中, 不得请假超过 k 天.

doc 很忧伤, 因为他还要陪学姐去逛街呢.

后来, doc发现, 如果自己哪一天智商更高一些, 陪学姐逛街会得到更多的好感度.
现在 doc 决定做一个实验来验证自己的猜想, 他拜托 小岛 预测出了 自己 未来 3n 天中, 每一天的智商.
doc 希望在之后的 3n 天中选出一些日子来陪学姐逛街, 要求在不违反校规的情况下, 陪学姐逛街的日子自己智商的总和最大.

可是, 究竟这个和最大能是多少呢?

格式


输入格式


第一行给出两个整数, n 和 k, 表示我们需要设计之后 3n 天的逛街计划, 且任意连续 n 天中不能请假超过 k 天.
第二行给出 3n 个整数, 依次表示 doc 每一天的智商有多少. 所有数据均为64位无符号整数

输出格式


输出只有一个整数, 表示可以取到的最大智商和.

样例1


样例输入1


              

样例输出1


限制


对于 20% 的数据, 1 <= n <= 12 , k = 3.
对于 70% 的数据, 1 <= n <= 40 .
对于 100% 的数据, 1 <= n <= 200 , 1 <= k <= 10.

                      
分析:

可以记第i天去不去逛街为a[i],第i天智商为val[i];
设:
p[1] = a[1] + a[2] + …… + a[n] <= k;
p[2] = a[2] + a[3] + …… + a[n + 1] <= k
……
p[n * 2 + 1] = a[n * 2 + 1] + a[n * 2 + 2] + …… + a[3 * n] <= k
然后添加辅助变量y[i],设q[i] = p[i] + y[i] = k
可得:
q[1] = p[1] +y[1] = k 
q[2] = p[2] +y[2] = k
……
q[n * 2 + 1] = p[n * 2 + 1] +y[n * 2 + 1] = k
添加 辅助变量 q[0] = 0,q[n * 2 + 2] = 0
依次相减得到:
q[1] - q[0] = a[1] + a[2] + …… + a[n] + y[1] = k; ---- 1
q[2] - q[1] = a[n + 1] - a[1] + y[2] - y[1] = 0; ----2
q[3] - q[2] = a[n + 2] - a[2] + y[3] - y[2] = 0;----3
……
q[n * 2 + 2] - q[n * 2 + 1] = - a[n * 2 + 1] - a[n * 2 + 2] - …… - a[3 * n] - y[n * 2 + 1] = -k;-----n * 2 + 2
可以发现每一个变量都在等式中出现了两次,并且一次为正,一次为负,正相对于网络流中的流量守恒,流进等于流出(实际流量即为变量的值)
于是我们可以把每个等式看成一个点。把源点和第一个点连流量为k,花费为0。汇点和最后一个点连流量为k,花费为0;
对于每一个a[i]把它在等式中为正的点连向它在等式中为负的点,流量为1,花费为-val[i]。(因为求最大费用最大流,花费取负数后答案再倒回来就行)
对于每一个y[i]把它在等式中为正的点连向它在等式中为负的点,流量为k,花费为0。
然后求一遍最小费用最大流,答案取相反数(这样变成了最大费用最大流),就为我们要的答案。
贴上AC代码:

 #include <cstdio>
#include <iostream>
#include <cstring>
#include <queue>
using namespace std;
const int N = 1e4;
const int M = 4e5;
const int INF = 0x3f3f3f3f;
using namespace std;
struct Edge
{
int from, to, cap, flow, cost, next;
};
Edge edge[M];
int head[N], inde,pre[N], dist[N];
bool vis[N];
int n,k;
void init()
{
inde = ;
memset(head, -, sizeof(head));
}
void AddEdge(int u, int v, int w, int c)
{
Edge E1 = {u, v, w, , c, head[u]};
edge[inde] = E1;
head[u] = inde++;
Edge E2 = {v, u, , , -c, head[v]};
edge[inde] = E2;
head[v] = inde++;
}
bool SPFA(int s, int t)
{
queue<int> Q;
memset(dist, INF, sizeof(dist));
memset(vis, false, sizeof(vis));
memset(pre, -, sizeof(pre));
dist[s] = ;
vis[s] = true;
Q.push(s);
while(!Q.empty())
{
int u = Q.front();
Q.pop();
vis[u] = false;
for(int i = head[u]; i != -; i = edge[i].next)
{
Edge E = edge[i];
if(dist[E.to] > dist[u] + E.cost && E.cap > E.flow)
{
dist[E.to] = dist[u] + E.cost;
pre[E.to] = i;
if(!vis[E.to])
{
vis[E.to] = true;
Q.push(E.to);
}
}
}
}
return pre[t] != -;
}
void MCMF(int s, int t, int &cost, int &flow)
{
flow = ;
cost = ;
while(SPFA(s, t))
{
int Min = INF;
for(int i = pre[t]; i != -; i = pre[edge[i^].to])
{
Edge E = edge[i];
Min = min(Min, E.cap - E.flow);
}
for(int i = pre[t]; i != -; i = pre[edge[i^].to])
{
edge[i].flow += Min;
edge[i^].flow -= Min;
cost += edge[i].cost * Min;
}
flow += Min;
}
}
int cnt,s,t;
int node[],val[];
int st[],en[];
void getMap(){
s = ++cnt;t = ++cnt;
for(int i = ;i <= n * + ;i++){
node[i] = ++cnt;
}for(int i = ;i <= * n;i++)scanf("%d",&val[i]);
AddEdge(s,node[],k,);
AddEdge(node[n * + ],t,k,);
for(int i = ;i <= n;i++)st[i] = node[];
for(int i = n + ;i <= * n;i++)st[i] = node[i - n + ];
for(int i = ;i <= * n;i++)en[i] = node[i + ];
for(int i = * n + ;i <= * n;i++)en[i] = node[n * + ];
for(int i = ;i <= * n;i++)AddEdge(st[i],en[i],,-val[i]);
for(int i = ;i <= * n + ;i++)AddEdge(node[i],node[i + ],k,);
}
int main()
{
scanf("%d %d",&n,&k);
init();
getMap();
int cost, flow;
MCMF(s,t, cost, flow);
printf("%d\n",-cost);
return ;
}

[vijos1891]学姐的逛街计划的更多相关文章

  1. Vijos1891 学姐的逛街计划 【费用流】*

    Vijos1891 学姐的逛街计划 描述 doc 最近太忙了, 每天都有课. 这不怕, doc 可以请假不去上课. 偏偏学校又有规定, 任意连续 n 天中, 不得请假超过 k 天. doc 很忧伤, ...

  2. vijos1891 学姐的逛街计划(线性规划)

    P1891学姐的逛街计划 描述 doc 最近太忙了, 每天都有课. 这不怕, doc 可以请假不去上课.偏偏学校又有规定, 任意连续 n 天中, 不得请假超过 k 天. doc 很忧伤, 因为他还要陪 ...

  3. 刷题总结——学姐的逛街计划(vijos1891费用流)

    题目: doc 最近太忙了, 每天都有课. 这不怕, doc 可以请假不去上课.偏偏学校又有规定, 任意连续 n 天中, 不得请假超过 k 天. doc 很忧伤, 因为他还要陪学姐去逛街呢. 后来, ...

  4. Vijos 学姐的逛街计划

    传送门 题解传送门 线性规划,最小费用最大流. 神奇的操作. //Achen #include<algorithm> #include<iostream> #include&l ...

  5. Vijos1901 学姐的钱包

    描述 学姐每次出门逛街都要带恰好M元钱, 不过她今天却忘记带钱包了.可怜的doc只好自己凑钱给学姐, 但是他口袋里只有一元钱.好在doc的N位朋友们都特别有钱, 他们答应与doc作一些交换.其中第i位 ...

  6. cdoj 1328 卿学姐与诡异村庄 Label:并查集 || 二分图染色

    卿学姐与诡异村庄 Time Limit: 4500/1500MS (Java/Others)     Memory Limit: 65535/65535KB (Java/Others) Submit  ...

  7. cdoj 1329 卿学姐与魔法 优先队列

    卿学姐与魔法 Time Limit: 1200/800MS (Java/Others)     Memory Limit: 65535/65535KB (Java/Others) Submit Sta ...

  8. cdoj 1324 卿学姐与公主 线段树裸题

    卿学姐与公主 Time Limit: 2000/1000MS (Java/Others)     Memory Limit: 65535/65535KB (Java/Others) Submit St ...

  9. vijosP1903学姐的实习工资

    描述 学姐去实习了, 一共实习了N天, 每一天都可以得到实习工资V[i], 这里V[1..N]被看作是整数序列.因为学姐很厉害, 所以V[1..N]是不下降的.也就是说学姐每天的工资只会越来越多, 不 ...

随机推荐

  1. 洛谷 P1507 NASA的食物计划

    题目背景 NASA(美国航空航天局)因为航天飞机的隔热瓦等其他安 全技术问题一直大伤脑筋,因此在各方压力下终止了航天 飞机的历史,但是此类事情会不会在以后发生,谁也无法 保证,在遇到这类航天问题时,解 ...

  2. 螺旋数字的python实现

    螺旋数字的算法简单实现. 示例 5 01 02 03 04 05 16 17 18 19 06 15 24 25 20 07 14 23 22 21 08 13 12 11 10 09 通过观察,外部 ...

  3. MVC之在实例中的应用

    MVC模式在Java Web应用程序中的实例分析 1. 结合六个基本质量属性 1)可用性 2)可修改性 3)性能 4)安全性 5)可测试性 6)易用性 2. 分析具体功能模块的MVC设计实现(例如登录 ...

  4. Android(java)学习笔记163:开发一个多界面的应用程序之界面间数据传递

    1.界面跳转的数据传递 (1)intent.setData() --> intent.getData():     传递的数据比较简单,一般是文本类型的数据String:倘若我们传递的数据比较复 ...

  5. iOS端架构、基本组成与使用说明

    一. app整体描述 app的描述:需求文档+接口文档+程序架构. 说明:新入手的开发人员必须拿到这三个说明文档才能整体了解app功能. 二.app架构描述 1.架构视图 2.分层结构说明 [1] a ...

  6. 世平信息(W 笔试)

    选择题 大题 1.启动Thread的方法有几种 算法题 1.写出冒泡排序算法

  7. ProxyFactory

    Spring定义了org.springframework.aop.framework.AopProxy接口,并提供了两个final类型的实现类. AopProxy类结构:

  8. gcc编译问题

    gcc avl.o hash.o list.o rb.o example.o -o 123.exe 多个.o输出 exe -c和-o都是gcc编译器的可选参数.-c表示只编译(compile)源文件但 ...

  9. 什么是session?

    Session一般译作会话.从不同的层面看待session,它有着类似但不全然相同的含义.比如,在web应用的用户看来,他打开浏览器访问一个电子商务网站,登录.并完成购物直到关闭浏览器,这是一个会话. ...

  10. 前端 (cookie )页面进入存储一次

     <!--引入jq--> <script> var isShowTip = window.sessionStorage.getItem("isShow") ...