仔细想想好像没学过斜率优化..

很容易推出状态转移方程\( f[i]=max{f[j]+a(s[i]-s[j])^2+b(s[i]-s[j])+c} \)

然后考虑j的选取,如果选j优于选k,那么:

\[f[j]+a(s[i]-s[j])^2+b(s[i]-s[j])+c>f[k]+a(s[i]-s[k])^2+b(s[i]-s[k])+c
\]

\[f[j]+as[i]^2+as[j]^2-2as[i]s[j]+bs[i]-bs[j]+c>f[k]+as[i]^2+as[k]^2-2as[i]s[k]+bs[i]-bs[k]+c
\]

\[f[j]-f[k]+as[j]^2-as[k]^2-bs[j]+bs[k]>2as[i]s[j]-2as[i]s[k]
\]

\[f[j]-f[k]+a(s[j]^2-s[k]^2)-b(s[j]+s[k])>2as[i](s[j]-s[k])
\]

\[\frac{f[j]-f[k]+a(s[j]^2-s[k]^2)-b(s[j]+s[k])}{2a(s[j]-s[k])}>s[i]
\]

注意这里的2a一定要除到左边不然会WA...(可能是精度问题)

然后维护这样一个斜率单调的双端队列即可。

#include<iostream>
#include<cstdio>
using namespace std;
const int N=1000005;
int n,a,b,c,d[N],q[N],l,r;
long long f[N],s[N];
int read()
{
int r=0,f=1;
char p=getchar();
while(p>'9'||p<'0')
{
if(p=='-')
f=-1;
p=getchar();
}
while(p>='0'&&p<='9')
{
r=r*10+p-48;
p=getchar();
}
return r*f;
}
inline double wk(int x,int y)
{
return (double)(f[y]-f[x]+a*(s[y]*s[y]-s[x]*s[x])+b*(s[x]-s[y]))/(double)(2*a*(s[y]-s[x]));
}
int main()
{
n=read(),a=read(),b=read(),c=read();
for(int i=1;i<=n;i++)
d[i]=read(),s[i]=s[i-1]+d[i];
for(int i=1;i<=n;i++)
{
while(l<r&&wk(q[l],q[l+1])<s[i])
l++;
f[i]=f[q[l]]+a*(s[i]-s[q[l]])*(s[i]-s[q[l]])+b*(s[i]-s[q[l]])+c;
while(l<r&&wk(q[r-1],q[r])>wk(q[r],i))
r--;
q[++r]=i;
}
printf("%lld\n",f[n]);
return 0;
}

bzoj 1911: [Apio2010]特别行动队【斜率优化dp】的更多相关文章

  1. BZOJ 1911: [Apio2010]特别行动队 [斜率优化DP]

    1911: [Apio2010]特别行动队 Time Limit: 4 Sec  Memory Limit: 64 MBSubmit: 4142  Solved: 1964[Submit][Statu ...

  2. bzoj 1911: [Apio2010]特别行动队 -- 斜率优化

    1911: [Apio2010]特别行动队 Time Limit: 4 Sec  Memory Limit: 64 MB Description Input Output Sample Input 4 ...

  3. bzoj1911[Apio2010]特别行动队 斜率优化dp

    1911: [Apio2010]特别行动队 Time Limit: 4 Sec  Memory Limit: 64 MBSubmit: 5057  Solved: 2492[Submit][Statu ...

  4. [APIO2010]特别行动队 --- 斜率优化DP

    [APIO2010]特别行动队 题面很直白,就不放了. 太套路了,做起来没点感觉了. \(dp(i)=dp(j)+a*(s(i)-s(j))^{2}+b*(s(i)-s(j))+c\) 直接推出一个斜 ...

  5. APIO2010 特别行动队 & 斜率优化DP算法笔记

    做完此题之后 自己应该算是真正理解了斜率优化DP 根据状态转移方程$f[i]=max(f[j]+ax^2+bx+c),x=sum[i]-sum[j]$ 可以变形为 $f[i]=max((a*sum[j ...

  6. bzoj1911 [Apio2010]特别行动队——斜率优化DP

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=1911 相当明显的斜率优化,很好做: 注意slp里面要有(double),以免出现精度问题. ...

  7. 【BZOJ1911】[Apio2010]特别行动队 斜率优化DP

    想了好久啊....——黑字为第一次更新.——这里是第二次更新,维护上下凸包据题而论,第一种方法是化式子的方法,需要好的化式子的方法,第二种是偏向几何,十分好想,纯正的维护凸包的方法,推荐. 用了我感觉 ...

  8. bzoj 1911 [Apio2010]特别行动队(斜率优化+DP)

    1911: [Apio2010]特别行动队 Time Limit: 4 Sec  Memory Limit: 64 MBSubmit: 3191  Solved: 1450[Submit][Statu ...

  9. BZOJ 1911: [Apio2010]特别行动队( dp + 斜率优化 )

    sum为战斗力的前缀和 dp(x) = max( dp(p)+A*(sumx-sump)2+B*(sumx-sump)+C )(0≤p<x) 然后斜率优化...懒得写下去了... ------- ...

  10. bzoj 1911: [Apio2010]特别行动队

    #include<cstdio> #include<iostream> #define M 1000009 #define ll long long using namespa ...

随机推荐

  1. hihocoder 1165 : 益智游戏

    时间限制:20000ms 单点时限:1000ms 内存限制:256MB 描述 幽香今天心情不错,正在和花田里的虫子玩一个益智游戏.这个游戏是这样的,对于一个数组A,幽香从A中选择一个数a,虫子从A中选 ...

  2. [Bzoj1034][ZJOJ2008]泡泡堂BNB(贪心)

    1034: [ZJOI2008]泡泡堂BNB Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 3482  Solved: 1776[Submit][St ...

  3. File类 判断功能和获取功能

    package cn.zmh.File; import java.io.File; /* * * File判断功能 * * */ public class FileDemo3判断功能 { public ...

  4. S5700&S5710 产品文档 : 配置

    http://support.huawei.com/hdx/hdx.do?docid=SC0000699332&lang=zh&path=PBI1-C103367%2FPBI1-C10 ...

  5. Dialog集合

    点击查看原文 demo下载地址http://download.csdn.net/detail/metis100/8498401 安卓开发一年.開始想整理些资料成库,以备日后高速开发. 第一天,整理了经 ...

  6. 基于unicorn-engine的虚拟机的实现(WxSpectre)

    反病毒虚拟机是一个很有优势的工具,可以说反病毒软件是否存在模拟器是衡量反病毒软件能力的一个指标.反病毒虚拟机不光是内嵌在反病毒软件内部,来动态执行样本.这种虚拟机一般也可以单独用来动态执行批量样本,检 ...

  7. hash_map与unordered_map区别

    http://blog.csdn.net/blues1021/article/details/45054159

  8. CentOS 5 全功能服务器搭建

    转自: http://www.php-oa.com/2007/12/27/centos-www.html 转:主要做为历史记录,以后用.另外很少见这么好的编译的文章,其实我不推荐用编译安装.但这个文章 ...

  9. CentOS LAMP一键安装网站环境及添加域名

    一般的VPS用户普遍使用一键安装包和WEB管理面板居多,在一键安装包中,使用LAMP和LNMP的普遍居多. 第一个版本的LAMP环境包安装过程以及建站过程分享出来. 第一.LAMP一键包环境的安装 目 ...

  10. HTML的DIV如何实现水平居中

    内部的DIV必须有下面两行代码即可 text-align:center; margin:0 auto;   在IE6中同样可以