Problem Statement

    

Cat Noku has just finished writing his first computer program. Noku's computer has m memory cells. The cells have addresses 0 through m-1. Noku's program consists of n instructions. The instructions have mutually independent effects and therefore they may be executed in any order. The instructions must be executed sequentially (i.e., one after another) and each instruction must be executed exactly once.

You are given a description of the n instructions as a vector <string> with n elements. Each instruction is a string of m characters. For each i, character i of an instruction is '1' if this instruction accesses memory cell i, or '0' if it does not.

Noku's computer uses caching, which influences the time needed to execute an instruction. More precisely, executing an instruction takes k^2 units of time, where k is the number of new memory cells this instruction accesses. (I.e., k is the number of memory cells that are accessed by this instruction but have not been accessed by any previously executed instruction. Note that k may be zero, in which case the current instruction is indeed executed in 0 units of time.)

Noku's instructions can be executed in many different orders. Clearly, different orders may lead to a different total time of execution. Find and return the shortest amount of time in which it is possible to execute all instructions.

Definition

    
Class: OrderOfOperations
Method: minTime
Parameters: vector <string>
Returns: int
Method signature: int minTime(vector <string> s)
(be sure your method is public)

Limits

    
Time limit (s): 2.000
Memory limit (MB): 256
Stack limit (MB): 256

Constraints

- n will be between 1 and 50, inclusive.
- m will be between 1 and 20, inclusive.
- s will have exactly n elements.
- Each element of s will have exactly m characters.
- Each character of s[i] will be either '0' or '1' for all valid i.

Examples

0)  
    
{
"111",
"001",
"010"
}
Returns: 3
Cat Noku has 3 instructions. The first instruction ("111") accesses all three memory cells. The second instruction ("001") accesses only memory cell 2. The third instruction ("010") accesses only memory cell 1. If Noku executes these three instructions in the given order, it will take 3^2 + 0^2 + 0^2 = 9 units of time. However, if he executes them in the order "second, third, first", it will take only 1^2 + 1^2 + 1^2 = 3 units of time. This is one optimal solution. Another optimal solution is to execute the instructions in the order "third, second, first".
1)  
    
{
"11101",
"00111",
"10101",
"00000",
"11000"
}
Returns: 9
 
2)  
    
{
"11111111111111111111"
}
Returns: 400
A single instruction that accesses all 20 memory cells.
3)  
    
{
"1000",
"1100",
"1110"
}
Returns: 3
 
4)  
    
{
"111",
"111",
"110",
"100"
}
Returns: 3
 

题意:给n个01串,设计一种顺序,使得每次新出现的1的个数的平方和最小

分析:比赛时不知道是div1的题,以为暴力贪心可以过,结果被hack掉了。题解说没有充分的证明使用贪心是很有风险的,正解是用状态压缩DP。

收获:爆零还能涨分,TC真奇怪。

官方题解

int dp[(1<<20)+10];
int a[55]; class OrderOfOperations {
public:
int minTime( vector <string> s ) {
int n = s.size (), m = s[0].length ();
memset (a, 0, sizeof (a));
int tot = 0;
for (int i=0; i<n; ++i) {
for (int j=0; j<m; ++j) {
if (s[i][j] == '1') a[i] |= (1<<j);
}
tot |= a[i];
}
memset (dp, INF, sizeof (dp));
dp[0] = 0;
for (int i=0; i<(1<<m); ++i) {
for (int j=0; j<n; ++j) {
int x = i | a[j]; //从i状态转移到x的状态
int y = x - i; //表示新出现的1
int k = __builtin_popcount (y); //内置函数,快速得到二进制下1的个数
dp[x] = min (dp[x], dp[i] + k * k); //类似Bellman_Ford
}
} return dp[tot];
}
};

  

状态压缩DP SRM 667 Div1 OrderOfOperations 250的更多相关文章

  1. hoj2662 状态压缩dp

    Pieces Assignment My Tags   (Edit)   Source : zhouguyue   Time limit : 1 sec   Memory limit : 64 M S ...

  2. POJ 3254 Corn Fields(状态压缩DP)

    Corn Fields Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 4739   Accepted: 2506 Descr ...

  3. [知识点]状态压缩DP

    // 此博文为迁移而来,写于2015年7月15日,不代表本人现在的观点与看法.原始地址:http://blog.sina.com.cn/s/blog_6022c4720102w6jf.html 1.前 ...

  4. HDU-4529 郑厂长系列故事——N骑士问题 状态压缩DP

    题意:给定一个合法的八皇后棋盘,现在给定1-10个骑士,问这些骑士不能够相互攻击的拜访方式有多少种. 分析:一开始想着搜索写,发现该题和八皇后不同,八皇后每一行只能够摆放一个棋子,因此搜索收敛的很快, ...

  5. DP大作战—状态压缩dp

    题目描述 阿姆斯特朗回旋加速式阿姆斯特朗炮是一种非常厉害的武器,这种武器可以毁灭自身同行同列两个单位范围内的所有其他单位(其实就是十字型),听起来比红警里面的法国巨炮可是厉害多了.现在,零崎要在地图上 ...

  6. 状态压缩dp问题

    问题:Ignatius has just come back school from the 30th ACM/ICPC. Now he has a lot of homework to do. Ev ...

  7. BZOJ-1226 学校食堂Dining 状态压缩DP

    1226: [SDOI2009]学校食堂Dining Time Limit: 10 Sec Memory Limit: 259 MB Submit: 588 Solved: 360 [Submit][ ...

  8. Marriage Ceremonies(状态压缩dp)

     Marriage Ceremonies Time Limit:2000MS     Memory Limit:32768KB     64bit IO Format:%lld & %llu ...

  9. HDU 1074 (状态压缩DP)

    题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=1074 题目大意:有N个作业(N<=15),每个作业需耗时,有一个截止期限.超期多少天就要扣多少 ...

随机推荐

  1. WPF数据验证(5)―― 错误模板

    <Style TargetType="{x:Type TextBox}">            <Setter Property="Validatio ...

  2. xamarin.android Activity之间跳转与传值

    前言 由于需要,所以接触到这个新的安卓开发模式,我会把我的学习经历全都记录下来,希望对大家有用. 导读 关于Activity,学习过安卓的人也应该明白什么是Activity,推荐新手去看YZF的这篇文 ...

  3. linux设备驱动学习笔记(1)

    学习了将近半个月的设备驱动程序的编写,也有一些体会,这里写下来也给学习做一个总结,为后面的学习做更好的准备. 首先,个人感觉驱动程序的设计是很有套路的,最基本的要求就是要掌握这些套路.所谓的套路就是一 ...

  4. jsp的4大作用域

    jsp的4大作用域 首先要声明一点,所谓“作用域”就是“信息共享的范围”,也就是说一个信息能够在多大的范围内有效.4个JSP内置对象的作用域分别为:application.session.reques ...

  5. POJ - 2142 The Balance(扩展欧几里得求解不定方程)

    d.用2种砝码,质量分别为a和b,称出质量为d的物品.求所用的砝码总数量最小(x+y最小),并且总质量最小(ax+by最小). s.扩展欧几里得求解不定方程. 设ax+by=d. 题意说不定方程一定有 ...

  6. Ural 1109 Conference(最小路径覆盖数)

    题意:A国家有M个代表,B国有N个代表,其中有K对代表可以进行谈判(一个是A国的,一个是B国的),并且每一个代表至少被包含在其中一对中(也就是说,每个人可以至少找到另外一个人谈判),每一对谈判需要一对 ...

  7. Python中的sort() key含义

    sorted(iterable[, cmp[, key[, reverse]]]) iterable.sort(cmp[, key[, reverse]]) 参数解释: (1)iterable指定要排 ...

  8. web 基本概念辨异 —— URI 与 URL

    两者的相同点: 都是唯一的,对资源(R:Resource)起到唯一的标识作用: 两者的不同点: URL 是 URI 的子集(URI 是父类,URL 是子类),是一种特定的实现形式: URI 可以是身份 ...

  9. win7Setx修改环境变量

    SETX.exe (Resource Kit, Windows 7) Set environment variables permanently, SETX can be used to set En ...

  10. 使用slot分发内容

    为了让组件可以组合,我们需要一种方式来混合父组件的内容与子组件的模板.这个过程被称为 内容分发 使用特殊的<slot>元素作为原始内容的插槽 除非子组件模板包含至少一个<slot&g ...