Problem Statement

    

Cat Noku has just finished writing his first computer program. Noku's computer has m memory cells. The cells have addresses 0 through m-1. Noku's program consists of n instructions. The instructions have mutually independent effects and therefore they may be executed in any order. The instructions must be executed sequentially (i.e., one after another) and each instruction must be executed exactly once.

You are given a description of the n instructions as a vector <string> with n elements. Each instruction is a string of m characters. For each i, character i of an instruction is '1' if this instruction accesses memory cell i, or '0' if it does not.

Noku's computer uses caching, which influences the time needed to execute an instruction. More precisely, executing an instruction takes k^2 units of time, where k is the number of new memory cells this instruction accesses. (I.e., k is the number of memory cells that are accessed by this instruction but have not been accessed by any previously executed instruction. Note that k may be zero, in which case the current instruction is indeed executed in 0 units of time.)

Noku's instructions can be executed in many different orders. Clearly, different orders may lead to a different total time of execution. Find and return the shortest amount of time in which it is possible to execute all instructions.

Definition

    
Class: OrderOfOperations
Method: minTime
Parameters: vector <string>
Returns: int
Method signature: int minTime(vector <string> s)
(be sure your method is public)

Limits

    
Time limit (s): 2.000
Memory limit (MB): 256
Stack limit (MB): 256

Constraints

- n will be between 1 and 50, inclusive.
- m will be between 1 and 20, inclusive.
- s will have exactly n elements.
- Each element of s will have exactly m characters.
- Each character of s[i] will be either '0' or '1' for all valid i.

Examples

0)  
    
{
"111",
"001",
"010"
}
Returns: 3
Cat Noku has 3 instructions. The first instruction ("111") accesses all three memory cells. The second instruction ("001") accesses only memory cell 2. The third instruction ("010") accesses only memory cell 1. If Noku executes these three instructions in the given order, it will take 3^2 + 0^2 + 0^2 = 9 units of time. However, if he executes them in the order "second, third, first", it will take only 1^2 + 1^2 + 1^2 = 3 units of time. This is one optimal solution. Another optimal solution is to execute the instructions in the order "third, second, first".
1)  
    
{
"11101",
"00111",
"10101",
"00000",
"11000"
}
Returns: 9
 
2)  
    
{
"11111111111111111111"
}
Returns: 400
A single instruction that accesses all 20 memory cells.
3)  
    
{
"1000",
"1100",
"1110"
}
Returns: 3
 
4)  
    
{
"111",
"111",
"110",
"100"
}
Returns: 3
 

题意:给n个01串,设计一种顺序,使得每次新出现的1的个数的平方和最小

分析:比赛时不知道是div1的题,以为暴力贪心可以过,结果被hack掉了。题解说没有充分的证明使用贪心是很有风险的,正解是用状态压缩DP。

收获:爆零还能涨分,TC真奇怪。

官方题解

int dp[(1<<20)+10];
int a[55]; class OrderOfOperations {
public:
int minTime( vector <string> s ) {
int n = s.size (), m = s[0].length ();
memset (a, 0, sizeof (a));
int tot = 0;
for (int i=0; i<n; ++i) {
for (int j=0; j<m; ++j) {
if (s[i][j] == '1') a[i] |= (1<<j);
}
tot |= a[i];
}
memset (dp, INF, sizeof (dp));
dp[0] = 0;
for (int i=0; i<(1<<m); ++i) {
for (int j=0; j<n; ++j) {
int x = i | a[j]; //从i状态转移到x的状态
int y = x - i; //表示新出现的1
int k = __builtin_popcount (y); //内置函数,快速得到二进制下1的个数
dp[x] = min (dp[x], dp[i] + k * k); //类似Bellman_Ford
}
} return dp[tot];
}
};

  

状态压缩DP SRM 667 Div1 OrderOfOperations 250的更多相关文章

  1. hoj2662 状态压缩dp

    Pieces Assignment My Tags   (Edit)   Source : zhouguyue   Time limit : 1 sec   Memory limit : 64 M S ...

  2. POJ 3254 Corn Fields(状态压缩DP)

    Corn Fields Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 4739   Accepted: 2506 Descr ...

  3. [知识点]状态压缩DP

    // 此博文为迁移而来,写于2015年7月15日,不代表本人现在的观点与看法.原始地址:http://blog.sina.com.cn/s/blog_6022c4720102w6jf.html 1.前 ...

  4. HDU-4529 郑厂长系列故事——N骑士问题 状态压缩DP

    题意:给定一个合法的八皇后棋盘,现在给定1-10个骑士,问这些骑士不能够相互攻击的拜访方式有多少种. 分析:一开始想着搜索写,发现该题和八皇后不同,八皇后每一行只能够摆放一个棋子,因此搜索收敛的很快, ...

  5. DP大作战—状态压缩dp

    题目描述 阿姆斯特朗回旋加速式阿姆斯特朗炮是一种非常厉害的武器,这种武器可以毁灭自身同行同列两个单位范围内的所有其他单位(其实就是十字型),听起来比红警里面的法国巨炮可是厉害多了.现在,零崎要在地图上 ...

  6. 状态压缩dp问题

    问题:Ignatius has just come back school from the 30th ACM/ICPC. Now he has a lot of homework to do. Ev ...

  7. BZOJ-1226 学校食堂Dining 状态压缩DP

    1226: [SDOI2009]学校食堂Dining Time Limit: 10 Sec Memory Limit: 259 MB Submit: 588 Solved: 360 [Submit][ ...

  8. Marriage Ceremonies(状态压缩dp)

     Marriage Ceremonies Time Limit:2000MS     Memory Limit:32768KB     64bit IO Format:%lld & %llu ...

  9. HDU 1074 (状态压缩DP)

    题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=1074 题目大意:有N个作业(N<=15),每个作业需耗时,有一个截止期限.超期多少天就要扣多少 ...

随机推荐

  1. window批处理-5 start

    作用 又一次启动一个单独窗体.在新窗体中运行命令 格式 start [/w] FileName demo bat: @echo off echo 在新窗体中打开txt文件.并等待新窗体正常退出(exi ...

  2. 宠物连连看2完整Android代码项目

    宠物连连看2完整代码,该源代码支持多种风格的连连看游戏的,如有国旗类的连连看,还有宠物连连看的等,主要的功能实现了无尽关卡挑战模式.还有催命倒计时,以及链接提示,暂停.多样图片集,挑战眼力和速度等,而 ...

  3. 关闭SVN服务

    关闭TSVNCache.exe进程 在Windows下使用SVN,通常都会安装TortoiseSVN,安装后会有一个TSVNCache.exe的进程驻留内存,这个进程会定时地去扫描Subversion ...

  4. 定时任务Timer

    一.Timer介绍 java.util.Timer java.util.TimerTask Timer是一个定时器类,通过该类可以为指定的定时任务进行配置.TimerTask类是一个定时任务类,该类实 ...

  5. BZOJ5379: Tree

    BZOJ5379: Tree Description JudgeOnline/upload/201806/1.pdf 题解Here! 题目大意就是:1. 换根.2. 对$LCA(u,v)$的子树修改. ...

  6. Ruby map、each、select、inject、collect 、detect reference

    参考 https://ruby-china.org/topics/26718 map:(collect是map的别名函数) 对数组中每个元素进行表达式操作,原始数组不会被改变,返回执行表达式结果的新数 ...

  7. React中Transition的作用

    /** * `Transaction` creates a black box that is able to wrap any method such that * certain invarian ...

  8. html5--6-10 CSS选择器7--伪类选择器

    html5--6-10 CSS选择器7--伪类选择器 实例 学习要点 掌握常用的CSS选择器 了解不太常用的CSS选择器 什么是选择器 当我们定义一条样式时候,这条样式会作用于网页当中的某些元素,所谓 ...

  9. [SDOI2016] 模式字符串 (BZOJ4598 & VIJOS1995)

    首先直接点分+hash就可以做,每个点用hash判断是否为S重复若干次后的前缀或后缀,每个子树与之前的结果O(m)暴力合并.在子树大小<m时停止分治,则总复杂度为O(nlog(n/m)). 问题 ...

  10. 「LuoguP1627 / T36198」 [CQOI2009]中位数

    Description 给出1~n的一个排列,统计该排列有多少个长度为奇数的连续子序列的中位数是b.中位数是指把所有元素从小到大排列后,位于中间的数. Input 第一行为两个正整数n和b,第二行为1 ...