Problem Statement

    

Cat Noku has just finished writing his first computer program. Noku's computer has m memory cells. The cells have addresses 0 through m-1. Noku's program consists of n instructions. The instructions have mutually independent effects and therefore they may be executed in any order. The instructions must be executed sequentially (i.e., one after another) and each instruction must be executed exactly once.

You are given a description of the n instructions as a vector <string> with n elements. Each instruction is a string of m characters. For each i, character i of an instruction is '1' if this instruction accesses memory cell i, or '0' if it does not.

Noku's computer uses caching, which influences the time needed to execute an instruction. More precisely, executing an instruction takes k^2 units of time, where k is the number of new memory cells this instruction accesses. (I.e., k is the number of memory cells that are accessed by this instruction but have not been accessed by any previously executed instruction. Note that k may be zero, in which case the current instruction is indeed executed in 0 units of time.)

Noku's instructions can be executed in many different orders. Clearly, different orders may lead to a different total time of execution. Find and return the shortest amount of time in which it is possible to execute all instructions.

Definition

    
Class: OrderOfOperations
Method: minTime
Parameters: vector <string>
Returns: int
Method signature: int minTime(vector <string> s)
(be sure your method is public)

Limits

    
Time limit (s): 2.000
Memory limit (MB): 256
Stack limit (MB): 256

Constraints

- n will be between 1 and 50, inclusive.
- m will be between 1 and 20, inclusive.
- s will have exactly n elements.
- Each element of s will have exactly m characters.
- Each character of s[i] will be either '0' or '1' for all valid i.

Examples

0)  
    
{
"111",
"001",
"010"
}
Returns: 3
Cat Noku has 3 instructions. The first instruction ("111") accesses all three memory cells. The second instruction ("001") accesses only memory cell 2. The third instruction ("010") accesses only memory cell 1. If Noku executes these three instructions in the given order, it will take 3^2 + 0^2 + 0^2 = 9 units of time. However, if he executes them in the order "second, third, first", it will take only 1^2 + 1^2 + 1^2 = 3 units of time. This is one optimal solution. Another optimal solution is to execute the instructions in the order "third, second, first".
1)  
    
{
"11101",
"00111",
"10101",
"00000",
"11000"
}
Returns: 9
 
2)  
    
{
"11111111111111111111"
}
Returns: 400
A single instruction that accesses all 20 memory cells.
3)  
    
{
"1000",
"1100",
"1110"
}
Returns: 3
 
4)  
    
{
"111",
"111",
"110",
"100"
}
Returns: 3
 

题意:给n个01串,设计一种顺序,使得每次新出现的1的个数的平方和最小

分析:比赛时不知道是div1的题,以为暴力贪心可以过,结果被hack掉了。题解说没有充分的证明使用贪心是很有风险的,正解是用状态压缩DP。

收获:爆零还能涨分,TC真奇怪。

官方题解

int dp[(1<<20)+10];
int a[55]; class OrderOfOperations {
public:
int minTime( vector <string> s ) {
int n = s.size (), m = s[0].length ();
memset (a, 0, sizeof (a));
int tot = 0;
for (int i=0; i<n; ++i) {
for (int j=0; j<m; ++j) {
if (s[i][j] == '1') a[i] |= (1<<j);
}
tot |= a[i];
}
memset (dp, INF, sizeof (dp));
dp[0] = 0;
for (int i=0; i<(1<<m); ++i) {
for (int j=0; j<n; ++j) {
int x = i | a[j]; //从i状态转移到x的状态
int y = x - i; //表示新出现的1
int k = __builtin_popcount (y); //内置函数,快速得到二进制下1的个数
dp[x] = min (dp[x], dp[i] + k * k); //类似Bellman_Ford
}
} return dp[tot];
}
};

  

状态压缩DP SRM 667 Div1 OrderOfOperations 250的更多相关文章

  1. hoj2662 状态压缩dp

    Pieces Assignment My Tags   (Edit)   Source : zhouguyue   Time limit : 1 sec   Memory limit : 64 M S ...

  2. POJ 3254 Corn Fields(状态压缩DP)

    Corn Fields Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 4739   Accepted: 2506 Descr ...

  3. [知识点]状态压缩DP

    // 此博文为迁移而来,写于2015年7月15日,不代表本人现在的观点与看法.原始地址:http://blog.sina.com.cn/s/blog_6022c4720102w6jf.html 1.前 ...

  4. HDU-4529 郑厂长系列故事——N骑士问题 状态压缩DP

    题意:给定一个合法的八皇后棋盘,现在给定1-10个骑士,问这些骑士不能够相互攻击的拜访方式有多少种. 分析:一开始想着搜索写,发现该题和八皇后不同,八皇后每一行只能够摆放一个棋子,因此搜索收敛的很快, ...

  5. DP大作战—状态压缩dp

    题目描述 阿姆斯特朗回旋加速式阿姆斯特朗炮是一种非常厉害的武器,这种武器可以毁灭自身同行同列两个单位范围内的所有其他单位(其实就是十字型),听起来比红警里面的法国巨炮可是厉害多了.现在,零崎要在地图上 ...

  6. 状态压缩dp问题

    问题:Ignatius has just come back school from the 30th ACM/ICPC. Now he has a lot of homework to do. Ev ...

  7. BZOJ-1226 学校食堂Dining 状态压缩DP

    1226: [SDOI2009]学校食堂Dining Time Limit: 10 Sec Memory Limit: 259 MB Submit: 588 Solved: 360 [Submit][ ...

  8. Marriage Ceremonies(状态压缩dp)

     Marriage Ceremonies Time Limit:2000MS     Memory Limit:32768KB     64bit IO Format:%lld & %llu ...

  9. HDU 1074 (状态压缩DP)

    题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=1074 题目大意:有N个作业(N<=15),每个作业需耗时,有一个截止期限.超期多少天就要扣多少 ...

随机推荐

  1. HttpClient 认证

    第四章 HTTP认证 HttpClient提供对由HTTP标准规范定义的认证模式的完全支持.HttpClient的认证框架可以扩展支持非标准的认证模式,比如NTLM和SPNEGO. 4.1 用户凭证 ...

  2. bzoj4149: [AMPPZ2014]Global Warming

    头都烂了怎么头疼啊 考虑先做出对于一个位置以它作为唯一最小值的最远区间,这个可以单调栈上二分搞出来 那么对于一个位置这个区间而言,一定是选择这个区间的最大数是作为最终的唯一最大数最优的 为什么呢?我们 ...

  3. hihocoder #1068 : RMQ-ST算法 ( RMQ算法 O(nlogn)处理 O(1)查询 *【模板】 1)初始化d数组直接读入+计算k值用数学函数log2()==*节约时间 )

    #1068 : RMQ-ST算法 时间限制:10000ms 单点时限:1000ms 内存限制:256MB 描述 小Hi和小Ho在美国旅行了相当长的一段时间之后,终于准备要回国啦!而在回国之前,他们准备 ...

  4. HDU3746 Cyclic Nacklace —— KMP 最小循环节

    题目链接:https://vjudge.net/problem/HDU-3746 Cyclic Nacklace Time Limit: 2000/1000 MS (Java/Others)    M ...

  5. RedisCluster集群原理

    主从复制,数据值每个服务器都存了. 针对redis集群的解决方案, 连接这个集群,不用在乎Master了 6台redis 1.why use Redis? 减轻数据库访问压力 2.持久化 RDB(间隔 ...

  6. ComboBox联动 (AJAX BS实现)

    //从webservice中取数据ajax            Ext.Ajax.request({                url: 'WebService.asmx/GetComboxFi ...

  7. Oracle:ORA-00214

    现场数据库服务器突然断电,启动时,提示如下现象: sql>sqlplus / as sysdba sql>startup ORA-00214: controlfile 'E:\oracle ...

  8. BZOJ_1295_[SCOI2009]最长距离_dij

    BZOJ_1295_[SCOI2009]最长距离_dij Description windy有一块矩形土地,被分为 N*M 块 1*1 的小格子. 有的格子含有障碍物. 如果从格子A可以走到格子B,那 ...

  9. python(一):multiprocessing——死锁

    前言近年来,使用python的人越来越多,这得益于其清晰的语法.低廉的入门代价等因素.尽管python受到的关注日益增多,但python并非完美,例如被人诟病最多的GIL(值得注意的是,GIL并非py ...

  10. Linux Cache 机制

    在阅读文章前,您应该具备基本的存储器层次结构知识,至少要了解局部性原理.要详细了解cache基本原理,可以参考本书<深入理解计算机系统>中存储器体系结构一章: 带着疑问来看文章,cache ...