E -- Expected value of the expression
DESCRIPTION

You are given an expression: A0O1A1O2A2⋯OnAnA0O1A1O2A2⋯OnAn, where Ai(0≤i≤n)Ai(0≤i≤n) represents number, Oi(1≤i≤n)Oi(1≤i≤n) represents operator. There are three operators, &,|,^&,|,^, which means and,or,xorand,or,xor, and they have the same priority.

The ii-th operator OiOi and the numbers AiAi disappear with the probability of pipi.

Find the expected value of an expression.

INPUT
The first line contains only one integer n(1≤n≤1000)n(1≤n≤1000). The second line contains n+1n+1 integers Ai(0≤Ai<220)Ai(0≤Ai<220). The third line contains nn chars OiOi. The fourth line contains nn floats pi(0≤pi≤1)pi(0≤pi≤1).
OUTPUT
Output the excepted value of the expression, round to 6 decimal places.
SAMPLE INPUT
2
1 2 3
^ &
0.1 0.2
SAMPLE OUTPUT
2.800000
HINT
Probability = 0.1 * 0.2 Value = 1 Probability = 0.1 * 0.8 Value = 1 & 3 = 1 Probability = 0.9 * 0.2 Value = 1 ^ 2 = 3 Probability = 0.9 * 0.8 Value = 1 ^ 2 & 3 = 3 Expected Value = 0.1 * 0.2 * 1 + 0.1 * 0.8 * 1 + 0.9 * 0.2 * 3 + 0.9 * 0.8 * 3 = 2.80000
 
 
题意:
  给你一个n+1个数进行位操作
  给你这个n+1个数(a0~an)和 进行的操作(异或,并,或) c[i]
  ci 和 ai同时消失的 概率是 pi
  求最后值得期望
题解:
  dp[i][25][0/1]
  表示前i个 数  0~21位上每一位存在(0/1)的概率,强推过去就行了
#include<bits/stdc++.h>
using namespace std;
#pragma comment(linker, "/STACK:102400000,102400000")
#define ls i<<1
#define rs ls | 1
#define mid ((ll+rr)>>1)
#define pii pair<int,int>
#define MP make_pair
typedef long long LL;
const long long INF = 1e18+1LL;
const double pi = acos(-1.0);
const int N = 5e3+, M = 1e3+,inf = 2e9; int n,a[N];
char c[N];
double dp[N][][],p[N];
int main() {
while(scanf("%d",&n)!=EOF) {
for(int i = ; i <= n; ++i) {
scanf("%d",&a[i]);
}
memset(dp,,sizeof(dp));
for(int i = ; i <= n; ++i) {
getchar();
scanf("%c",&c[i]);
}
for(int i = ; i <= n; ++i) {
scanf("%lf",&p[i]);
}
for(int i = ; i <= ; ++i) {
if(((<<i)&a[])) dp[][i][] = ,dp[][i][] = ;
else dp[][i][] = ,dp[][i][] = ;
}
for(int i = ; i <= n; ++i) { for(int j = ; j <= ; ++j) {
dp[i][j][] += 1.0*dp[i-][j][] * p[i];
dp[i][j][] += 1.0*dp[i-][j][] * p[i];
}
for(int j = ; j <= ; ++j) {
int tmp = ((a[i]>>j)&);
if(c[i] == '^') {
dp[i][j][tmp^] += 1.0*dp[i-][j][]*(1.0-p[i]);
dp[i][j][tmp^] += 1.0*dp[i-][j][]*(1.0-p[i]);
}
else if(c[i] == '&'){
dp[i][j][tmp&] += 1.0*dp[i-][j][]*(1.0-p[i]);
dp[i][j][tmp&] += 1.0*dp[i-][j][]*(1.0-p[i]);
}
else if(c[i] == '|') {
dp[i][j][tmp|] += 1.0*dp[i-][j][]*(1.0-p[i]);
dp[i][j][tmp|] += 1.0*dp[i-][j][]*(1.0-p[i]);
}
}
}
double ans = ;
for(int i = ; i <= ; ++i) {
LL tmp = <<i;
ans += (double)(dp[n][i][]) * 1.0 * tmp;
}
printf("%.6f\n",ans);
}
return ;
}

lonlifeOJ1152 “玲珑杯”ACM比赛 Round #19 概率DP的更多相关文章

  1. “玲珑杯”ACM比赛 Round #19题解&源码【A,规律,B,二分,C,牛顿迭代法,D,平衡树,E,概率dp】

    A -- simple math problem Time Limit:2s Memory Limit:128MByte Submissions:1599Solved:270 SAMPLE INPUT ...

  2. “玲珑杯”ACM比赛 Round #19 B -- Buildings (RMQ + 二分)

    “玲珑杯”ACM比赛 Round #19 Start Time:2017-07-29 14:00:00 End Time:2017-07-29 16:30:00 Refresh Time:2017-0 ...

  3. 玲珑杯”ACM比赛 Round #19 B 维护单调栈

    1149 - Buildings Time Limit:2s Memory Limit:128MByte Submissions:588Solved:151 DESCRIPTION There are ...

  4. “玲珑杯”ACM比赛 Round #19

    A -- A simple math problem Time Limit:2s Memory Limit:128MByte Submissions:1599Solved:270 DESCRIPTIO ...

  5. “玲珑杯”ACM比赛 Round #12题解&源码

    我能说我比较傻么!就只能做一道签到题,没办法,我就先写下A题的题解&源码吧,日后补上剩余题的题解&源码吧!                                     A ...

  6. “玲珑杯”ACM比赛 Round #1

    Start Time:2016-08-20 13:00:00 End Time:2016-08-20 18:00:00 Refresh Time:2017-11-12 19:51:52 Public ...

  7. “玲珑杯”ACM比赛 Round #18

    “玲珑杯”ACM比赛 Round #18 Start Time:2017-07-15 12:00:00 End Time:2017-07-15 15:46:00 A -- 计算几何你瞎暴力 Time ...

  8. “玲珑杯”ACM比赛 Round #4 E -- array DP

    http://www.ifrog.cc/acm/problem/1050?contest=1006&no=4 DP[val]表示以val这个值结尾的等差数列有多少个 DP[val] += DP ...

  9. “玲珑杯”ACM比赛 Round #18 C -- 图论你先敲完模板(和题目一点关系都没有,dp)

    题目链接:http://www.ifrog.cc/acm/problem/1146?contest=1020&no=2 题解:显然知道这是一道dp而且 dp[i]=min(dp[j]+2^(x ...

随机推荐

  1. 【UML】概述以及面向对象技术总结

    导读:结束了软工文档后,就开始了UML的学习,不管学习什么,都要先从整体上去把握,然后再从细节上去分析理解.在视频的开头,就对UML进行了概述.然后接着讲了面向对象技术,用例图,类图和包图等.看着软工 ...

  2. 九度oj 题目1185:特殊排序

    题目描述: 输入一系列整数,将其中最大的数挑出,并将剩下的数进行排序. 输入: 输入第一行包括1个整数N,1<=N<=1000,代表输入数据的个数. 接下来的一行有N个整数. 输出: 可能 ...

  3. HDU 1423 Greatest Common Increasing Subsequence ——动态规划

    好久以前的坑了. 最长公共上升子序列. 没什么好说的,自己太菜了 #include <map> #include <cmath> #include <queue> ...

  4. [TJOI2009]开关 (线段树)

    题目描述 现有N(2 ≤ N ≤ 100000)盏灯排成一排,从左到右依次编号为:1,2,......,N.然后依次执行M(1 ≤ M ≤ 100000)项操作,操作分为两种:第一种操作指定一个区间[ ...

  5. Spoj-NPC2015A Eefun Guessing Words

    Eefun Guessing Words Eefun is currently learning to read. His way of learning  is unique, by trying ...

  6. uva 11426 线性欧拉函数筛选+递推

    Problem J GCD Extreme (II) Input: Standard Input Output: Standard Output Given the value of N, you w ...

  7. [JSOI2016]反质数序列

    我竟然半个小时切了一道JSOI2016,,,,不敢相信. 首先可以发现,如果N个数中1出现的次数<=1的话,我们按不能在一个集合连无向边的话,连出的一定是一个二分图. 接下来我来证明一下: 因为 ...

  8. C# 读写bat文件

    读: var batFile = "D:\\test.bat"; if (File.Exists(batFile)) { using (var sr = new StreamRea ...

  9. js如何获取table或者ul中鼠标点的行号和内容

    <html> <head> <script language="javascript"> function doclick() { var td ...

  10. flask生成环境不要使用其自身低性能的服务器

    flask自带一个服务器,主要用在开发环境.默认情况下一次只能处理一个请求,当然你也可以设置为多进程或者多线程的情况. 但是其自带服务器的处理能力比较有限.生成环境下应该使用其他的服务器,参照:htt ...