lonlifeOJ1152 “玲珑杯”ACM比赛 Round #19 概率DP
You are given an expression: A0O1A1O2A2⋯OnAnA0O1A1O2A2⋯OnAn, where Ai(0≤i≤n)Ai(0≤i≤n) represents number, Oi(1≤i≤n)Oi(1≤i≤n) represents operator. There are three operators, &,|,^&,|,^, which means and,or,xorand,or,xor, and they have the same priority.
The ii-th operator OiOi and the numbers AiAi disappear with the probability of pipi.
Find the expected value of an expression.
#include<bits/stdc++.h>
using namespace std;
#pragma comment(linker, "/STACK:102400000,102400000")
#define ls i<<1
#define rs ls | 1
#define mid ((ll+rr)>>1)
#define pii pair<int,int>
#define MP make_pair
typedef long long LL;
const long long INF = 1e18+1LL;
const double pi = acos(-1.0);
const int N = 5e3+, M = 1e3+,inf = 2e9; int n,a[N];
char c[N];
double dp[N][][],p[N];
int main() {
while(scanf("%d",&n)!=EOF) {
for(int i = ; i <= n; ++i) {
scanf("%d",&a[i]);
}
memset(dp,,sizeof(dp));
for(int i = ; i <= n; ++i) {
getchar();
scanf("%c",&c[i]);
}
for(int i = ; i <= n; ++i) {
scanf("%lf",&p[i]);
}
for(int i = ; i <= ; ++i) {
if(((<<i)&a[])) dp[][i][] = ,dp[][i][] = ;
else dp[][i][] = ,dp[][i][] = ;
}
for(int i = ; i <= n; ++i) { for(int j = ; j <= ; ++j) {
dp[i][j][] += 1.0*dp[i-][j][] * p[i];
dp[i][j][] += 1.0*dp[i-][j][] * p[i];
}
for(int j = ; j <= ; ++j) {
int tmp = ((a[i]>>j)&);
if(c[i] == '^') {
dp[i][j][tmp^] += 1.0*dp[i-][j][]*(1.0-p[i]);
dp[i][j][tmp^] += 1.0*dp[i-][j][]*(1.0-p[i]);
}
else if(c[i] == '&'){
dp[i][j][tmp&] += 1.0*dp[i-][j][]*(1.0-p[i]);
dp[i][j][tmp&] += 1.0*dp[i-][j][]*(1.0-p[i]);
}
else if(c[i] == '|') {
dp[i][j][tmp|] += 1.0*dp[i-][j][]*(1.0-p[i]);
dp[i][j][tmp|] += 1.0*dp[i-][j][]*(1.0-p[i]);
}
}
}
double ans = ;
for(int i = ; i <= ; ++i) {
LL tmp = <<i;
ans += (double)(dp[n][i][]) * 1.0 * tmp;
}
printf("%.6f\n",ans);
}
return ;
}
lonlifeOJ1152 “玲珑杯”ACM比赛 Round #19 概率DP的更多相关文章
- “玲珑杯”ACM比赛 Round #19题解&源码【A,规律,B,二分,C,牛顿迭代法,D,平衡树,E,概率dp】
A -- simple math problem Time Limit:2s Memory Limit:128MByte Submissions:1599Solved:270 SAMPLE INPUT ...
- “玲珑杯”ACM比赛 Round #19 B -- Buildings (RMQ + 二分)
“玲珑杯”ACM比赛 Round #19 Start Time:2017-07-29 14:00:00 End Time:2017-07-29 16:30:00 Refresh Time:2017-0 ...
- 玲珑杯”ACM比赛 Round #19 B 维护单调栈
1149 - Buildings Time Limit:2s Memory Limit:128MByte Submissions:588Solved:151 DESCRIPTION There are ...
- “玲珑杯”ACM比赛 Round #19
A -- A simple math problem Time Limit:2s Memory Limit:128MByte Submissions:1599Solved:270 DESCRIPTIO ...
- “玲珑杯”ACM比赛 Round #12题解&源码
我能说我比较傻么!就只能做一道签到题,没办法,我就先写下A题的题解&源码吧,日后补上剩余题的题解&源码吧! A ...
- “玲珑杯”ACM比赛 Round #1
Start Time:2016-08-20 13:00:00 End Time:2016-08-20 18:00:00 Refresh Time:2017-11-12 19:51:52 Public ...
- “玲珑杯”ACM比赛 Round #18
“玲珑杯”ACM比赛 Round #18 Start Time:2017-07-15 12:00:00 End Time:2017-07-15 15:46:00 A -- 计算几何你瞎暴力 Time ...
- “玲珑杯”ACM比赛 Round #4 E -- array DP
http://www.ifrog.cc/acm/problem/1050?contest=1006&no=4 DP[val]表示以val这个值结尾的等差数列有多少个 DP[val] += DP ...
- “玲珑杯”ACM比赛 Round #18 C -- 图论你先敲完模板(和题目一点关系都没有,dp)
题目链接:http://www.ifrog.cc/acm/problem/1146?contest=1020&no=2 题解:显然知道这是一道dp而且 dp[i]=min(dp[j]+2^(x ...
随机推荐
- 【CCF】通信网络 简单搜索
去重!不然有环就直接挂掉了...0分 #include<iostream> #include<cstdio> #include<string> #include&l ...
- *Codeforces989D. A Shade of Moonlight
数轴上$n \leq 100000$个不重叠的云,给坐标,长度都是$l$,有些云速度1,有些云速度-1,风速记为$w$,问在风速不大于$w_{max}$时,有几对云可能在0相遇.每一对云单独考虑. 多 ...
- linux命令netstat或ifconfig未找到
linux命令netstat或ifconfig未找到 linux使用netstat或者ifconfig命令时,显示命令未找到.通过yum search netstat这个命令,匹配结果如下:===== ...
- android导入项目出错之解决办法
导入android源码后,基本都有错误,R.java也不会自动生成,因为是第一次导入工程,工程有错R.java就不会自动生成了,工程有错误,当然模拟器就不能启动,也就看不到效果.随后网上找各种解决方法 ...
- 连接mysql报错 : The server time zone value 'Öйú±ê׼ʱ¼ä' is unrecognized or represents more than one time zone...
time zone 时区错误 DBEAVER连接MySQL运行报错The server time zone value 'Öйú±ê׼ʱ¼ä' is unrecognized or repres ...
- Javascript构造函数和原型
相信你已经知道了,Javascript函数也可以作为对象构造器.比如,为了模拟面向对象编程中的Class,可以用如下的代码 function Person(name){ this.name = nam ...
- 【mac】屏幕截图快捷键
这里只说四种 1.command+shift+4 截图是区域截图,会自动保存在桌面上 2.command+shift+control+4 区域截图,截图会自动保存在剪切板中,然后你可以通过comman ...
- ASP.NETCore使用AutoFac依赖注入
原文:ASP.NETCore使用AutoFac依赖注入 实现代码 1.新建接口类:IRepository.cs,规范各个操作类的都有那些方法,方便管理. using System; using Sys ...
- jQuery.ajax()方法中參数具体解析
前言 在项目开发中,为了实现异步向服务端发起请求,最常常使用的就是jQuery.ajax方法了.刚開始需求比較简单,调用jQuery.ajax方法时要传的參数也就那几个常见的參数:url/data/d ...
- 如何绕过Win8、Win10的systemsetting与注册表校验设置默认浏览器
*本文原创作者:浪子_三少,属Freebuf原创奖励计划,未经许可禁止转载 在win7时我们只需修改注册表就能设置默认浏览器,但是win8.win10下不能直接修改的因为同样的注册表项,win8.wi ...