In this example:

protocol MyProtocol {

func testFuncA()

}

extension MyProtocol {

func testFuncA() {

print("MyProtocol's testFuncA")

}

}

class MyClass : MyProtocol {}

let object: MyClass = MyClass()

object.testFuncA()

static dispatch is used. The concrete type of object is known at compile time; it's MyClass. Swift can then see that it conforms to MyProtocol without providing its own implementation of testFuncA(), so it can dispatch straight to the extension method.

So to answer your individual questions:

MyClassMyClassNo – a Swift class v-table only holds methods defined in the body of the class declaration. That is to say:

protocol MyProtocol {

func testFuncA()

}

extension MyProtocol {

// No entry in MyClass' Swift v-table.

// (but an entry in MyClass' protocol witness table for conformance to MyProtocol)

func testFuncA() {

print("MyProtocol's testFuncA")

}

}

class MyClass : MyProtocol {

// An entry in MyClass' Swift v-table.

func foo() {}

}

extension MyClass {

// No entry in MyClass' Swift v-table (this is why you can't override

// extension methods without using Obj-C message dispatch).

func bar() {}

}

There are no existential containers in the code:

let object: MyClass = MyClass()

object.testFuncA()

Existential containers are used for protocol-typed instances, such as your first example:

let object: MyProtocol = MyClass()

object.testFuncA()

The MyClass instance is boxed in an existential container with a protocol witness table that maps calls to testFuncA() to the extension method (now we're dealing with dynamic dispatch).

A nice way to see all of the above in action is by taking a look at the SIL generated by the compiler; which is a fairly high-level intermediate representation of the generated code (but low-level enough to see what kind of dispatch mechanisms are in play).

You can do so by running the following (note it's best to first remove print statements from your program, as they inflate the size of the SIL generated considerably):

swiftc -emit-sil main.swift | xcrun swift-demangle > main.silgen

Let's take a look at the SIL for the first example in this answer. Here's the main function, which is the entry-point of the program:

// main

sil @main : $@convention(c) (Int32, UnsafeMutablePointer<Optional<UnsafeMutablePointer<Int8>>>) -> Int32 {

bb0(%0 : $Int32, %1 : $UnsafeMutablePointer<Optional<UnsafeMutablePointer<Int8>>>):

alloc_global @main.object : main.MyClass       // id: %2

%3 = global_addr @main.object : main.MyClass : $*MyClass // users: %9, %7

// function_ref MyClass.__allocating_init()

%4 = function_ref @main.MyClass.__allocating_init() -> main.MyClass : $@convention(method) (@thick MyClass.Type) -> @owned MyClass // user: %6

%5 = metatype $@thick MyClass.Type              // user: %6

%6 = apply %4(%5) : $@convention(method) (@thick MyClass.Type) -> @owned MyClass // user: %7

store %6 to %3 : $*MyClass                      // id: %7

// Get a reference to the extension method and call it (static dispatch).

// function_ref MyProtocol.testFuncA()

%8 = function_ref @(extension in main):main.MyProtocol.testFuncA() -> () : $@convention(method) <τ_0_0 where τ_0_0 : MyProtocol> (@in_guaranteed τ_0_0) -> () // user: %12

%9 = load %3 : $*MyClass                        // user: %11

%10 = alloc_stack $MyClass                      // users: %11, %13, %12

store %9 to %10 : $*MyClass                     // id: %11

%12 = apply %8<MyClass>(%10) : $@convention(method) <τ_0_0 where τ_0_0 : MyProtocol> (@in_guaranteed τ_0_0) -> ()

dealloc_stack %10 : $*MyClass                   // id: %13

%14 = integer_literal $Builtin.Int32, 0         // user: %15

%15 = struct $Int32 (%14 : $Builtin.Int32)      // user: %16

return %15 : $Int32                             // id: %16

} // end sil function 'main'

The bit that we're interested in here is this line:

%8 = function_ref @(extension in main):main.MyProtocol.testFuncA() -> () : $@convention(method) <τ_0_0 where τ_0_0 : MyProtocol> (@in_guaranteed τ_0_0) -> () // user: %12

The function_ref instruction gets a reference to a function known at compile-time. You can see that it's getting a reference to the function @(extension in main):main.MyProtocol.testFuncA() -> (), which is the method in the protocol extension. Thus Swift is using static dispatch.

Let's now take a look at what happens when we make the call like this:

let object: MyProtocol = MyClass()

object.testFuncA()

The main function now looks like this:

// main

sil @main : $@convention(c) (Int32, UnsafeMutablePointer<Optional<UnsafeMutablePointer<Int8>>>) -> Int32 {

bb0(%0 : $Int32, %1 : $UnsafeMutablePointer<Optional<UnsafeMutablePointer<Int8>>>):

alloc_global @main.object : main.MyProtocol  // id: %2

%3 = global_addr @main.object : main.MyProtocol : $*MyProtocol // users: %9, %4

// Create an opaque existential container and get its address (%4).

%4 = init_existential_addr %3 : $*MyProtocol, $MyClass // user: %8

// function_ref MyClass.__allocating_init()

%5 = function_ref @main.MyClass.__allocating_init() -> main.MyClass : $@convention(method) (@thick MyClass.Type) -> @owned MyClass // user: %7

%6 = metatype $@thick MyClass.Type              // user: %7

%7 = apply %5(%6) : $@convention(method) (@thick MyClass.Type) -> @owned MyClass // user: %8

// Store the MyClass instance in the existential container.

store %7 to %4 : $*MyClass                      // id: %8

// Open the existential container to get a pointer to the MyClass instance.

%9 = open_existential_addr immutable_access %3 : $*MyProtocol to $*@opened("F199B87A-06BA-11E8-A29C-DCA9047B1400") MyProtocol // users: %11, %11, %10

// Dynamically lookup the function to call for the testFuncA requirement.

%10 = witness_method $@opened("F199B87A-06BA-11E8-A29C-DCA9047B1400") MyProtocol, #MyProtocol.testFuncA!1 : <Self where Self : MyProtocol> (Self) -> () -> (), %9 : $*@opened("F199B87A-06BA-11E8-A29C-DCA9047B1400") MyProtocol : $@convention(witness_method) <τ_0_0 where τ_0_0 : MyProtocol> (@in_guaranteed τ_0_0) -> () // type-defs: %9; user: %11

// Call the function we looked-up for the testFuncA requirement.

%11 = apply %10<@opened("F199B87A-06BA-11E8-A29C-DCA9047B1400") MyProtocol>(%9) : $@convention(witness_method) <τ_0_0 where τ_0_0 : MyProtocol> (@in_guaranteed τ_0_0) -> () // type-defs: %9

%12 = integer_literal $Builtin.Int32, 0         // user: %13

%13 = struct $Int32 (%12 : $Builtin.Int32)      // user: %14

return %13 : $Int32                             // id: %14

} // end sil function 'main'

There are some key differences here.

An (opaque) existential container is created with init_existential_addr, and the MyClass instance is stored into it (store %7 to %4).

The existential container is then opened with open_existential_addr, which gets a pointer to the instance stored (the MyClass instance).

Then, witness_method is used in order to lookup the function to call for the protocol requirement MyProtocol.testFuncA for the MyClass instance. This will check the protocol witness table for MyClass's conformance, which is listed at the bottom of the generated SIL:

sil_witness_table hidden MyClass: MyProtocol module main {

method #MyProtocol.testFuncA!1: <Self where Self : MyProtocol> (Self) -> () -> () : @protocol witness for main.MyProtocol.testFuncA() -> () in conformance main.MyClass : main.MyProtocol in main // protocol witness for MyProtocol.testFuncA() in conformance MyClass

}

This lists the function @protocol witness for main.MyProtocol.testFuncA() -> (). We can check the implementation of this function:

// protocol witness for MyProtocol.testFuncA() in conformance MyClass

sil private [transparent] [thunk] @protocol witness for main.MyProtocol.testFuncA() -> () in conformance main.MyClass : main.MyProtocol in main : $@convention(witness_method) (@in_guaranteed MyClass) -> () {

// %0                                             // user: %2

bb0(%0 : $*MyClass):

%1 = alloc_stack $MyClass                       // users: %7, %6, %4, %2

copy_addr %0 to [initialization] %1 : $*MyClass // id: %2

// Get a reference to the extension method and call it.

// function_ref MyProtocol.testFuncA()

%3 = function_ref @(extension in main):main.MyProtocol.testFuncA() -> () : $@convention(method) <τ_0_0 where τ_0_0 : MyProtocol> (@in_guaranteed τ_0_0) -> () // user: %4

%4 = apply %3<MyClass>(%1) : $@convention(method) <τ_0_0 where τ_0_0 : MyProtocol> (@in_guaranteed τ_0_0) -> ()

%5 = tuple ()                                   // user: %8

destroy_addr %1 : $*MyClass                     // id: %6

dealloc_stack %1 : $*MyClass                    // id: %7

return %5 : $()                                 // id: %8

} // end sil function 'protocol witness for main.MyProtocol.testFuncA() -> () in conformance main.MyClass : main.MyProtocol in main'

and sure enough, its getting a function_ref to the extension method, and calling that function.

The looked-up witness function is then called after the witness_method lookup with the line:

%11 = apply %10<@opened("F199B87A-06BA-11E8-A29C-DCA9047B1400") MyProtocol>(%9) : $@convention(witness_method) <τ_0_0 where τ_0_0 : MyProtocol> (@in_guaranteed τ_0_0) -> () // type-defs: %9

So, we can conclude that dynamic protocol dispatch is used here, based on the use of witness_method.

We just breezed though quite a lot of technical details here; feel free to work through the SIL line-by-line, using the documentation to find out what each instruction does. I'm happy to clarify anything you may be unsure about.

https://stackoverflow.com/questions/48422621/which-dispatch-method-would-be-used-in-swift

Which dispatch method would be used in Swift?的更多相关文章

  1. Which dispatch method would be used in Swift?-Existential Container

    In this example: protocol MyProtocol { func testFuncA() } extension MyProtocol { func testFuncA() { ...

  2. 【基本功】深入剖析Swift性能优化

    简介 2014年,苹果公司在WWDC上发布Swift这一新的编程语言.经过几年的发展,Swift已经成为iOS开发语言的“中流砥柱”,Swift提供了非常灵活的高级别特性,例如协议.闭包.泛型等,并且 ...

  3. 深入剖析Swift性能优化

    简介 2014年,苹果公司在WWDC上发布Swift这一新的编程语言.经过几年的发展,Swift已经成为iOS开发语言的“中流砥柱”,Swift提供了非常灵活的高级别特性,例如协议.闭包.泛型等,并且 ...

  4. [转] How to dispatch a Redux action with a timeout?

    How to dispatch a Redux action with a timeout? Q I have an action that updates notification state of ...

  5. Using Swift with Cocoa and Objective-C(Swift 2.0版):开始--基础设置-备

    这是一个正在研发的API或技术的概要文件,苹果公司提供这些信息主要是为了帮助你通过苹果产品使用这些技术或者编程接口而做好计划,该信息有可能会在未来发生改变,本文当中提到的软件应该以最终发布的操作系统测 ...

  6. Unused Method(不再使用的方法)——Dead Code(死亡代码)

        系列文章目录:     使用Fortify进行代码静态分析(系列文章) Unused Method(不再使用的方法)    示例:  private bool checkLevel(strin ...

  7. [React] Use the useReducer Hook and Dispatch Actions to Update State (useReducer, useMemo, useEffect)

    As an alternate to useState, you could also use the useReducer hook that provides state and a dispat ...

  8. PHP 5.6 编译安装选项说明

    `configure' configures this package to adapt to many kinds of systems. Usage: ./configure [OPTION].. ...

  9. JSP实现word文档的上传,在线预览,下载

    前两天帮同学实现在线预览word文档中的内容,而且需要提供可以下载的链接!在网上找了好久,都没有什么可行的方法,只得用最笨的方法来实现了.希望得到各位大神的指教.下面我就具体谈谈自己的实现过程,总结一 ...

随机推荐

  1. 安卓输入子系统之inotify与epoll机制【学习笔记】【原创】

    平台信息:内核:linux3.1.0系统:android5.0平台:tiny4412 作者:庄泽彬(欢迎转载,请注明作者) 说明: 韦老师的安卓视频学习笔记 一.在安卓的输入子系统中如何监听文件的产生 ...

  2. HDU4027 Can you answer these queries? —— 线段树 区间修改

    题目链接:https://vjudge.net/problem/HDU-4027 A lot of battleships of evil are arranged in a line before ...

  3. return value, output parameter,

    Return Value https://docs.microsoft.com/en-us/sql/t-sql/language-elements/return-transact-sql?view=s ...

  4. UWP开发入门系列笔记之(零):UWP的前世今生

    引言 在本篇文章中,可以掌握以下知识: 设备族群,如何决定目标设备 新的UI控件和新面板帮助你适应不同的设备特征 从Windows 8系统开始,微软就 引入了WindowsRT(Windows Run ...

  5. BZOJ1266:上学路线route (最短路+最小割)

    可可和卡卡家住合肥市的东郊,每天上学他们都要转车多次才能到达市区西端的学校.直到有一天他们两人参加了学校的信息学奥林匹克竞赛小组才发现每天上学的乘车路线不一定是最优的. 可可:“很可能我们在上学的路途 ...

  6. BZOJ_3105_[cqoi2013]新Nim游戏_线性基+博弈论

    BZOJ_3105_[cqoi2013]新Nim游戏_线性基+博弈论 Description 传统的Nim游戏是这样的:有一些火柴堆,每堆都有若干根火柴(不同堆的火柴数量可以不同).两个游戏者轮流操作 ...

  7. HDU-ACM“菜鸟先飞”冬训系列赛——第9场

    Problem A 题意 一对兔子每月生一对兔子,兔子在\(m\)月后成熟,问\(d\)月后有多少兔子 分析 可以发现,第i月的兔子数量取决于第i-1月与i-m月,故 \(a[i]=a[i-1]+a[ ...

  8. SAS基础 -- SAS编程入门

    SAS语言 -- 简介   SAS语言是一种专用的数据管理与分析语言,它提供了一种完善的编程语言.类似于计算机的高级语言,SAS用户只需要熟悉其命令.语句及简单的语法规则就可以做数据管理和分析处理工作 ...

  9. python爬虫抓取哈尔滨天气信息(静态爬虫)

    python 爬虫 爬取哈尔滨天气信息 - http://www.weather.com.cn/weather/101050101.shtml 环境: windows7 python3.4(pip i ...

  10. 查找MySQL和 SQL sever data

    MySql SQL server