题目链接:Uva 11582 [vjudge]

watermark/2/text/aHR0cDovL2Jsb2cuY3Nkbi5uZXQv/font/5a6L5L2T/fontsize/400/fill/I0JBQkFCMA==/dissolve/70/gravity/Center" alt="">

题意

输入两个非负整数a、b和正整数n(0<=a,b<=2^64,1<=n<=1000),让你计算f(a^b)对n取模的值,当中f(0) = 0,f(1) =  1。且对随意非负整数i。f(i+2)= f(i+1)+f(i)。

分析

全部的计算都是对n取模。设F(i) =f(i)mod n, 非常easy发现,F(x)是具有周期性的,由于对N取模的值最多也就N个,当二元组(F(i-1),F(i))反复的时候。整个序列也就反复了。周期i – 1啊,自己能够找组小的数据研究研究,就能够发现这个规律了。

周期最大会有多大呢?因为余数最多也就N个。那么最多N^2就会反复,全然能够才时限内攻克了。

剩下的知识就是针对高速幂取模了,这个在我另外一篇博客《超级高速幂【费马小定理】+【高速幂取模】》里面有比較具体的介绍。

參考代码

/****************************>>>>HEADFILES<<<<****************************/
#include <set>
#include <map>
#include <list>
#include <cmath>
#include <queue>
#include <vector>
#include <cstdio>
#include <string>
#include <cstring>
#include <iomanip>
#include <iostream>
#include <sstream>
#include <algorithm>
using namespace std;
/****************************>>>>>DEFINE<<<<<*****************************/
#define fst first
#define snd second
#define root 1,N,1
#define lson l,mid,rt<<1
#define rson mid+1,r,rt<<1|1
#define PB(a) push_back(a)
#define MP(a,b) make_pair(a,b)
#define CASE(T) for(scanf("%d",&T);T--;)
#define FIN freopen("input.txt","r",stdin)
#define FOUT freopen("output.txt","w",stdout)
//#pragma comment(linker, "/STACK:1024000000,1024000000")
//typedef unsigned __int64 ull;
typedef unsigned long long ull;
typedef pair<int, int> pii;
const int INF = 0x3f3f3f3f;
const int maxn = 1000 + 5;
const int maxm = 20000 + 5;
/****************************>>>>SEPARATOR<<<<****************************/
int T, N;
ull a, b;
int ans[maxn*maxn];
int Fibo(const int& MOD)
{
int ret;
ans[0] = 0, ans[1] = 1 % MOD;
int i = 2;
while(1)
{
ans[i] = (ans[i - 1] + ans[i - 2]) % MOD;
if(ans[i - 1] == 0 && ans[i] == 1 % MOD) break;
i++;
}
return i - 1;
}
int pow_mod(ull x, ull y, int MOD)
{
ull ret = 1;
while(y)
{
if(y & 1) ret = (ret * x) % MOD;
x = (x * x) % MOD;
y >>= 1;
}
return (int)ret;
}
int main()
{
// FIN;
CASE(T)
{
scanf("%llu %llu %d",&a,&b,&N);
if(a == 0 || N == 1)
{
printf("0\n");
continue;
}
int Cyc = Fibo(N);
int pos = pow_mod(a % Cyc, b, Cyc);
printf("%d\n",ans[pos]);
}
return 0;
}

UVa 11582 Colossal Fibonacci Numbers! 【大数幂取模】的更多相关文章

  1. UVA 11582 Colossal Fibonacci Numbers(数学)

    Colossal Fibonacci Numbers 想先说下最近的状态吧,已经考完试了,这个暑假也应该是最后刷题的暑假了,打完今年acm就应该会退了,但是还什么都不会呢? +_+ 所以这个暑假,一定 ...

  2. UVa 11582 Colossal Fibonacci Numbers! 紫书

    思路是按紫书上说的来. 参考了:https://blog.csdn.net/qwsin/article/details/51834161  的代码: #include <cstdio> # ...

  3. UVA 11582 Colossal Fibonacci Numbers!(循环节打表+幂取模)

    题目链接:https://cn.vjudge.net/problem/UVA-11582 /* 问题 输入a,b,n(0<a,b<2^64(a and bwill not both be ...

  4. UVa 11582 - Colossal Fibonacci Numbers!(数论)

    链接: https://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem& ...

  5. UVa #11582 Colossal Fibonacci Numbers!

    巨大的斐波那契数 The i'th Fibonacci number f (i) is recursively defined in the following way: f (0) = 0 and  ...

  6. UVA 11582 Colossal Fibonacci Numbers! 大斐波那契数

    大致题意:输入两个非负整数a,b和正整数n.计算f(a^b)%n.其中f[0]=f[1]=1, f[i+2]=f[i+1]+f[i]. 即计算大斐波那契数再取模. 一开始看到大斐波那契数,就想到了矩阵 ...

  7. UVA 11582 Colossal Fibonacci Numbers!【数学】

    大一刚开始接触ACM就买了<算法竞赛入门经典>这本书,当时只能看懂前几章,而且题目也没做,粗鄙地以为这本书不适合自己.等到现在快大三了再回过头来看,发现刘老师还是很棒的! 扯远了... 题 ...

  8. UVA - 11582 Colossal Fibonacci Numbers! (巨大的斐波那契数!)

    题意:输入两个非负整数a.b和正整数n(0<=a,b<264,1<=n<=1000),你的任务是计算f(ab)除以n的余数,f(0) = 0, f(1) = 1,且对于所有非负 ...

  9. EOJ3134. 短信激活码(大数幂取模)

    题面 输入只有5位,所以转化为long long类型用快速幂取模 前面补0的写法printf("%05lld\n",ans);如果ans不足5位会在前面补0 #include< ...

随机推荐

  1. 第2节 hive基本操作:10、外部分区表综合练习

    外部分区表综合练习: 需求描述:现在有一个文件score.csv文件,存放在集群的这个目录下/export/servers/scoredatas/month=201806,这个文件每天都会生成,存放到 ...

  2. secureCRT 破解

    转自:http://www.cnblogs.com/qingtingzhe/articles/5008902.html

  3. node.js 的介绍

    1.node.js是什么? (1)node.js不是一门编程语言, 是一个开发平台,就像Java开发平台,Net平台,PHP开发平台,Apple开发平台.(何为开发平台?有对应的编程语言,有语言运行时 ...

  4. c语言中的 strcpy和strncpy字符串函数使用介绍

    1.strcpy函数 函数原型:char *strcpy(char *dst,char const *src)            必须保证dst字符的空间足以保存src字符,否则多余的字符仍然被复 ...

  5. 关于OpenMP的归约操作reduction

    这里提一个重要的点 像这样 ; void ff() { sum += 0.5; } //main() #pragma omp parallel for reduction(+:sum) ; i < ...

  6. python各种推导式分析

    推导式comprehensions(又称解析式),是Python的一种独有特性.推导式是可以从一个数据序列构建另一个新的数据序列的结构体. 共有三种推导,在Python2和3中都有支持: 列表(lis ...

  7. mui.openWindow的html5+和web传参的兼容

    mui.openWindow兼容web&plus环境下的页面传参 背景介绍 刚刚好要写个微信公众号和html5+兼容的项目 发现总是用localStorage传参不是事啊 太不优雅了 想了想还 ...

  8. 爬虫项目 之(一) --- urllib 和 正则re

    from urllib import request,parse from time import sleep import re # 1.[数据的获取] # 封装一个函数,用于将url转化成一个请求 ...

  9. python之抽象 2014-4-6

    #抽象 8.40am-1.懒惰即美德2.抽象和结构3.创建函数 内建的callable 函数可以判定函数是否可以调用 >>> import math >>> x=1 ...

  10. Spring框架中 配置c3p0连接池

    开发准备: 1.导入jar包: ioc基本jar jdbcTemplate基本jar c3p0基本jar 别忘了mysql数据库驱动jar 原始程序代码:不使用配置文件方式(IOC)生成访问数据库对象 ...