【bzoj2728】[HNOI2012]与非
#include<algorithm>
#include<iostream>
#include<cstdlib>
#include<cstring>
#include<cstdio>
#include<cmath>
using namespace std; typedef long long LL; LL k,n,l,r; LL a[1010<<2];
int s[110],xd[110];
int res; bool flag(true); bool check(int i,int j)
{
for (int m=1;m<=n;m++)
if (((a[m]>>i) ^ (a[m]>>j)) & 1)
return false;
return true;
} LL query(LL x)
{
LL ans=0;
if (x>=(1LL<<k))
return 1LL<<res;
int u,v=res;
for (int i=0;i<=64;i++)
s[i]=2;
for (int i=k-1;i>=0;i--)
{
u=xd[i];
if ((x>>i) & 1)
{
if (s[u]==2)
s[u]=1,v--,ans+=(1LL<<v);
else if (s[u]==0)
{
ans+=(1LL<<v);
break;
}
}
else
if (s[u]==2)
s[u]=0,v--;
else if (s[u]==1)
break;
}
return ans;
} int main()
{
scanf("%lld%lld%lld%lld",&n,&k,&l,&r);
for (int i=1;i<=n;i++)
scanf("%lld",&a[i]);
for (int i=0;i<=k-1;i++)
{
int j;
for (j=0;j<=i-1;j++)
if (check(i,j))
{
xd[i]=j;
break;
}
if (i==j)
xd[i]=i,res++;
}
LL s1=query(r+1);
LL s2=query(l);
printf("%lld",s1-s2);
return 0;
}
【bzoj2728】[HNOI2012]与非的更多相关文章
- BZOJ2728 HNOI2012与非(并查集+数位dp)
容易发现x nand x=not x.并且使用这个性质有x and y=not(x nand y)=(x nand y)nand(x nand y).也就是说nand运算可以作为not和and运算使用 ...
- BZOJ2728: [HNOI2012]与非
线性基乱搞,非正解= = #include<cstdio> int n,m; typedef long long ll; ll l[60],j,s,t; void up(ll& i ...
- 【BZOJ2728】[HNOI2012]与非 并查集+数位DP
[BZOJ2728][HNOI2012]与非 Description Input 输入文件第一行是用空格隔开的四个正整数N,K,L和R,接下来的一行是N个非负整数A1,A2……AN,其含义如上所述. ...
- 【BZOJ 2728】 2728: [HNOI2012]与非 (线性基?)
2728: [HNOI2012]与非 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 813 Solved: 389 Description Inpu ...
- BZOJ 2728: [HNOI2012]与非
2728: [HNOI2012]与非 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 786 Solved: 371[Submit][Status][ ...
- [HNOI2012]与非
题目描述 NAND(与非)是一种二元逻辑运算,其运算结果为真当且仅当两个输入的布尔值不全为真.NAND运算的真值表如下(1表示真,0表示假): 两个非负整数的NAND是指将它们表示成二进制数,再在对应 ...
- BZOJ 2728: [HNOI2012]与非(位运算)
题意 定义 NAND(与非)运算,其运算结果为真当且仅当两个输入的布尔值不全为真,也就是 A NAND B = NOT(A AND B) ,运算位数不会超过 \(k\) 位, 给你 \(n\) 个整数 ...
- BZOJ 2728 HNOI2012 与非 高斯消元
题目大意:给定k位二进制下的n个数,求[l,r]区间内有多少个数能通过这几个数与非得到 首先观察真值表 我们有A nand A = not A 然后就有not ( A nand B ) = A and ...
- Luogu3220 HNOI2012 与非 数位DP
传送门 题意:给出$N$个范围在$[0,2^k-1]$的整数,定义位运算$NAND$为位运算$AND$的逆运算,求$[L,R]$中有多少数能成为若干个前面给出的整数.若干括号和$NAND$运算组成的表 ...
随机推荐
- vue hash模式和404页面的配置
1.设置我们的路由配置文件(/src/router/index.js): { path:'*', component:Error } 这里的path:’*’就是找不到页面时的配置,component是 ...
- BZOJ 4695 最假女选手 线段树
题意: 给定一个长度为 N序列,编号从1 到 N.要求支持下面几种操作: 1.给一个区间[L,R] 加上一个数x 2.把一个区间[L,R] 里小于x 的数变成x 3.把一个区间[L,R] 里大于x ...
- 在你的Android手机上运行Linux
之前试过许多方法(也就几种),像什么Complete Linux Installer,Debian noroot,利用已有的Linux构造Bootstrap之类,要么就是复杂得要命(调了两天没有调出来 ...
- jquery data属性 attr vs data
html5的自定义data属性相信大家都不会陌生,有了它你可以绑定所需的数据到指定元素上.然后通过jquery设置.获取数据,简直开心的不行啊.想到设置.获取元素属性值,大家一定首先想到了jquery ...
- 对 Spring IoC 的理解
理解 “ 控制反转(IoC)” 控制反转(IoC):用白话来讲,就是由 Spring 容器控制程序中类与类之间的关系,而非传统实现中,由程序代码直接操控.这也就是所谓 “控制反转” 的概念所在:控制权 ...
- 零基础入门学习Python(24)--递归:汉诺塔
知识点 这节课主要讲解用递归的方法,实现汉诺塔的解答 对于游戏的玩法,我们可以简单分解为三个步骤: 1) 将前63个盘子从X移动到Y上. 2) 将最底下的第64个盘子从X移动到Z上. 3) 将Y上的6 ...
- python3.x Day5 面向对象
类:类是指:对具有相同属性的事物的抽象.蓝图.原型.在类中定义了这些事物都具备的属性和共同的方法. 对象:一个对象就是一个类实例化以后的实例,一个类必须经过实例化后才能在程序中被使用,一个类可以实例化 ...
- Python之机器学习-朴素贝叶斯(垃圾邮件分类)
目录 朴素贝叶斯(垃圾邮件分类) 邮箱训练集下载地址 模块导入 文本预处理 遍历邮件 训练模型 测试模型 朴素贝叶斯(垃圾邮件分类) 邮箱训练集下载地址 邮箱训练集可以加我微信:nickchen121 ...
- Courses on Turbulence
Courses on Turbulence Table of Contents 1. Lecture 1.1. UIUC Renewable energy and turbulent environm ...
- 全文搜索(AC-1)-互联网信息过载问题
什么是信息过载? 信息检索技术是什么? 信息过滤技术是什么?